
Unix/Linux Induction
or: How I Learned to Stop Worrying and Love the :(){:|:&};:

Jascha Schewtschenko

Institute of Cosmology and Gravitation, University of Portsmouth

October 9, 2019

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 1 / 38

Outline

1 Linux vs Unix vs macOS

2 Shells

3 Filesystem(s)

4 Pipes and input/output control

5 Printing

6 Software

7 Process/Job control

8 Scripting, text editing, etc.

9 Help/Manpages

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 2 / 38

Linux vs Unix vs MacOS

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 3 / 38

Linux vs Unix vs MacOS

Unix Multitasking, multiuser computer operating system (OS);
developed in 1970s; modular set of programs/tools; shell
scripting to combine tools

GNU/Linux [abbr. L(inux)i(s)n(ot)u(ni)x] ... but close enough; Linux = kernel
(core OS) developed by Linus Torvalds in 1991 with the
GNU software stack on top (compilers, editors, GUIs, etc).
Distros (e.g. Red Hat) bundle software with Linux kernel.

macOS Unix-based OS developed in early 2000s exclusively for
Apple’s Macintosh computers (not to be confused with
’classic’ Mac OS !);

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 3 / 38

Linux vs Unix vs MacOS

Unix Multitasking, multiuser computer operating system (OS);
developed in 1970s; modular set of programs/tools; shell
scripting to combine tools

GNU/Linux [abbr. L(inux)i(s)n(ot)u(ni)x] ... but close enough; Linux = kernel
(core OS) developed by Linus Torvalds in 1991 with the
GNU software stack on top (compilers, editors, GUIs, etc).
Distros (e.g. Red Hat) bundle software with Linux kernel.

macOS Unix-based OS developed in early 2000s exclusively for
Apple’s Macintosh computers (not to be confused with
’classic’ Mac OS !);

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 3 / 38

Linux vs Unix vs MacOS

Unix Multitasking, multiuser computer operating system (OS);
developed in 1970s; modular set of programs/tools; shell
scripting to combine tools

GNU/Linux [abbr. L(inux)i(s)n(ot)u(ni)x] ... but close enough; Linux = kernel
(core OS) developed by Linus Torvalds in 1991 with the
GNU software stack on top (compilers, editors, GUIs, etc).
Distros (e.g. Red Hat) bundle software with Linux kernel.

macOS Unix-based OS developed in early 2000s exclusively for
Apple’s Macintosh computers (not to be confused with
’classic’ Mac OS !);

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 3 / 38

Linux vs Unix vs MacOS (cont.)

Close relationship between OSs makes it possible to port programs
from one to another, e.g. macOS supports many of the libraries found
in Linux which allows to easily* compile Linux programs on MacOS
(*adjustments have to be made; reverse portability not that easy)

Most astrophysics software will work fairly straightforwardly on either
OS

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 4 / 38

Linux vs Unix vs MacOS (cont.)

Close relationship between OSs makes it possible to port programs
from one to another, e.g. macOS supports many of the libraries found
in Linux which allows to easily* compile Linux programs on MacOS
(*adjustments have to be made; reverse portability not that easy)

Most astrophysics software will work fairly straightforwardly on either
OS

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 4 / 38

Shells

A shell is a program/interpreter that works as an interface between
the user and the OS via:

text/command-line interface (CLI) e.g. MS-DOS, sh, csh, bash;
allows to run commands sequentially (or pre-scripted) to
execute tools installed on the OS.

graphical user interface (GUI) e.g. MS Windows desktop, X window
system & window managers/tools; allow users to access
data via a menu/shortlink-driven graphical interface
with tools allowing for graphical
representation/manipulation of e.g. files.

some OS have a fixed shell (e.g. Windows, macOS), others like
Linux/Unix have a wide variety of shells, both graphical (e.g. KDE,
Gnome, Unity) as well as CLI (e.g. sh, bash, csh)

In this course, we will focus on GNOME3 and bash, as they are
pre-installed shells on our (newer) Centos7 Linux distro (tutorials on
other shells can be found online)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 5 / 38

Shells

A shell is a program/interpreter that works as an interface between
the user and the OS via:

text/command-line interface (CLI) e.g. MS-DOS, sh, csh, bash;
allows to run commands sequentially (or pre-scripted) to
execute tools installed on the OS.

graphical user interface (GUI) e.g. MS Windows desktop, X window
system & window managers/tools; allow users to access
data via a menu/shortlink-driven graphical interface
with tools allowing for graphical
representation/manipulation of e.g. files.

some OS have a fixed shell (e.g. Windows, macOS), others like
Linux/Unix have a wide variety of shells, both graphical (e.g. KDE,
Gnome, Unity) as well as CLI (e.g. sh, bash, csh)

In this course, we will focus on GNOME3 and bash, as they are
pre-installed shells on our (newer) Centos7 Linux distro (tutorials on
other shells can be found online)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 5 / 38

Shells

A shell is a program/interpreter that works as an interface between
the user and the OS via:

text/command-line interface (CLI) e.g. MS-DOS, sh, csh, bash;
allows to run commands sequentially (or pre-scripted) to
execute tools installed on the OS.

graphical user interface (GUI) e.g. MS Windows desktop, X window
system & window managers/tools; allow users to access
data via a menu/shortlink-driven graphical interface
with tools allowing for graphical
representation/manipulation of e.g. files.

some OS have a fixed shell (e.g. Windows, macOS), others like
Linux/Unix have a wide variety of shells, both graphical (e.g. KDE,
Gnome, Unity) as well as CLI (e.g. sh, bash, csh)

In this course, we will focus on GNOME3 and bash, as they are
pre-installed shells on our (newer) Centos7 Linux distro (tutorials on
other shells can be found online)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 5 / 38

Shells

A shell is a program/interpreter that works as an interface between
the user and the OS via:

text/command-line interface (CLI) e.g. MS-DOS, sh, csh, bash;
allows to run commands sequentially (or pre-scripted) to
execute tools installed on the OS.

graphical user interface (GUI) e.g. MS Windows desktop, X window
system & window managers/tools; allow users to access
data via a menu/shortlink-driven graphical interface
with tools allowing for graphical
representation/manipulation of e.g. files.

some OS have a fixed shell (e.g. Windows, macOS), others like
Linux/Unix have a wide variety of shells, both graphical (e.g. KDE,
Gnome, Unity) as well as CLI (e.g. sh, bash, csh)

In this course, we will focus on GNOME3 and bash, as they are
pre-installed shells on our (newer) Centos7 Linux distro (tutorials on
other shells can be found online)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 5 / 38

Shells

A shell is a program/interpreter that works as an interface between
the user and the OS via:

text/command-line interface (CLI) e.g. MS-DOS, sh, csh, bash;
allows to run commands sequentially (or pre-scripted) to
execute tools installed on the OS.

graphical user interface (GUI) e.g. MS Windows desktop, X window
system & window managers/tools; allow users to access
data via a menu/shortlink-driven graphical interface
with tools allowing for graphical
representation/manipulation of e.g. files.

some OS have a fixed shell (e.g. Windows, macOS), others like
Linux/Unix have a wide variety of shells, both graphical (e.g. KDE,
Gnome, Unity) as well as CLI (e.g. sh, bash, csh)

In this course, we will focus on GNOME3 and bash, as they are
pre-installed shells on our (newer) Centos7 Linux distro (tutorials on
other shells can be found online)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 5 / 38

Graphical shell: GNOME
GNOME project is part of GNU project; open source; developed by
volunteers and paid contributors since 1999

Layout (Desktop/Overview mode):

useful features:

online services many tools tie in with cloud services like Google Drive
or DropBox

mouse-buffer Mark text anywhere and insert this text anywhere else
by clicking onto the middle mouse button (or
alternativly, left and right button)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 6 / 38

Graphical shell: GNOME
GNOME project is part of GNU project; open source; developed by
volunteers and paid contributors since 1999

Layout (Desktop/Overview mode):

useful features:

online services many tools tie in with cloud services like Google Drive
or DropBox

mouse-buffer Mark text anywhere and insert this text anywhere else
by clicking onto the middle mouse button (or
alternativly, left and right button)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 6 / 38

Graphical shell: GNOME
GNOME project is part of GNU project; open source; developed by
volunteers and paid contributors since 1999

Layout (Desktop/Overview mode):

useful features:

online services many tools tie in with cloud services like Google Drive
or DropBox

mouse-buffer Mark text anywhere and insert this text anywhere else
by clicking onto the middle mouse button (or
alternativly, left and right button)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 6 / 38

Command-line shell: bash

b(ourne)a(gain)sh(ell) - default shell in most systems nowadays

within the graphical environment, you can get access to a
command-line shell by opening a terminal e.g. the default
gnome-terminal

useful features:

tab-completion complete commands and filenames by using TAB key
history list of previously executed commands (or cycle through

them)
piping directly using the output of one tool as input for

another, e.g. ls -l | grep test

job control halt/continue/kill/renice processes
scripting execute multiple commands, check for conditions (bash

actually touring-complete)

We will have a look at useful built-in commands and shell scripting a
bit later.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 7 / 38

Command-line shell: bash

b(ourne)a(gain)sh(ell) - default shell in most systems nowadays

within the graphical environment, you can get access to a
command-line shell by opening a terminal e.g. the default
gnome-terminal

useful features:

tab-completion complete commands and filenames by using TAB key
history list of previously executed commands (or cycle through

them)
piping directly using the output of one tool as input for

another, e.g. ls -l | grep test

job control halt/continue/kill/renice processes
scripting execute multiple commands, check for conditions (bash

actually touring-complete)

We will have a look at useful built-in commands and shell scripting a
bit later.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 7 / 38

Command-line shell: bash

b(ourne)a(gain)sh(ell) - default shell in most systems nowadays

within the graphical environment, you can get access to a
command-line shell by opening a terminal e.g. the default
gnome-terminal

useful features:

tab-completion complete commands and filenames by using TAB key
history list of previously executed commands (or cycle through

them)
piping directly using the output of one tool as input for

another, e.g. ls -l | grep test

job control halt/continue/kill/renice processes
scripting execute multiple commands, check for conditions (bash

actually touring-complete)

We will have a look at useful built-in commands and shell scripting a
bit later.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 7 / 38

Command-line shell: bash

b(ourne)a(gain)sh(ell) - default shell in most systems nowadays

within the graphical environment, you can get access to a
command-line shell by opening a terminal e.g. the default
gnome-terminal

useful features:

tab-completion complete commands and filenames by using TAB key
history list of previously executed commands (or cycle through

them)
piping directly using the output of one tool as input for

another, e.g. ls -l | grep test

job control halt/continue/kill/renice processes
scripting execute multiple commands, check for conditions (bash

actually touring-complete)

We will have a look at useful built-in commands and shell scripting a
bit later.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 7 / 38

Command-line shell: bash

b(ourne)a(gain)sh(ell) - default shell in most systems nowadays

within the graphical environment, you can get access to a
command-line shell by opening a terminal e.g. the default
gnome-terminal

useful features:

tab-completion complete commands and filenames by using TAB key
history list of previously executed commands (or cycle through

them)
piping directly using the output of one tool as input for

another, e.g. ls -l | grep test

job control halt/continue/kill/renice processes
scripting execute multiple commands, check for conditions (bash

actually touring-complete)

We will have a look at useful built-in commands and shell scripting a
bit later.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 7 / 38

Remote shell

S(ecure)SH(ell) - main way to access Linux remotely - safe and
efficient (alternatives like rlogin/rsh should not be used as they
trasmit their data unencrypted)

In Unix/Linux/macOS, you can simply use it from the command line:

$ ssh -Y <username>@<remote machine address>

For Windows, you will have to install an ssh client (e.g. PuTTY),
which comes with a graphical interface

The actual shell, you work with then, will be the shell on the remote
system (e.g. bash)

If you have an X server installed (Linux by default, Windows/Xming,
macOS/XQuartz), ssh also allows graphical tools to be “X-forwarded”
onto your local desktop with the “-Y” option when running the
command.

Alternatively, you can use remote desktop software like X2Go, to get
a full remote graphical shell.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 8 / 38

Remote shell

S(ecure)SH(ell) - main way to access Linux remotely - safe and
efficient (alternatives like rlogin/rsh should not be used as they
trasmit their data unencrypted)

In Unix/Linux/macOS, you can simply use it from the command line:

$ ssh -Y <username>@<remote machine address>

For Windows, you will have to install an ssh client (e.g. PuTTY),
which comes with a graphical interface

The actual shell, you work with then, will be the shell on the remote
system (e.g. bash)

If you have an X server installed (Linux by default, Windows/Xming,
macOS/XQuartz), ssh also allows graphical tools to be “X-forwarded”
onto your local desktop with the “-Y” option when running the
command.

Alternatively, you can use remote desktop software like X2Go, to get
a full remote graphical shell.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 8 / 38

Remote shell

S(ecure)SH(ell) - main way to access Linux remotely - safe and
efficient (alternatives like rlogin/rsh should not be used as they
trasmit their data unencrypted)

In Unix/Linux/macOS, you can simply use it from the command line:

$ ssh -Y <username>@<remote machine address>

For Windows, you will have to install an ssh client (e.g. PuTTY),
which comes with a graphical interface

The actual shell, you work with then, will be the shell on the remote
system (e.g. bash)

If you have an X server installed (Linux by default, Windows/Xming,
macOS/XQuartz), ssh also allows graphical tools to be “X-forwarded”
onto your local desktop with the “-Y” option when running the
command.

Alternatively, you can use remote desktop software like X2Go, to get
a full remote graphical shell.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 8 / 38

Remote shell

S(ecure)SH(ell) - main way to access Linux remotely - safe and
efficient (alternatives like rlogin/rsh should not be used as they
trasmit their data unencrypted)

In Unix/Linux/macOS, you can simply use it from the command line:

$ ssh -Y <username>@<remote machine address>

For Windows, you will have to install an ssh client (e.g. PuTTY),
which comes with a graphical interface

The actual shell, you work with then, will be the shell on the remote
system (e.g. bash)

If you have an X server installed (Linux by default, Windows/Xming,
macOS/XQuartz), ssh also allows graphical tools to be “X-forwarded”
onto your local desktop with the “-Y” option when running the
command.

Alternatively, you can use remote desktop software like X2Go, to get
a full remote graphical shell.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 8 / 38

Remote shell

S(ecure)SH(ell) - main way to access Linux remotely - safe and
efficient (alternatives like rlogin/rsh should not be used as they
trasmit their data unencrypted)

In Unix/Linux/macOS, you can simply use it from the command line:

$ ssh -Y <username>@<remote machine address>

For Windows, you will have to install an ssh client (e.g. PuTTY),
which comes with a graphical interface

The actual shell, you work with then, will be the shell on the remote
system (e.g. bash)

If you have an X server installed (Linux by default, Windows/Xming,
macOS/XQuartz), ssh also allows graphical tools to be “X-forwarded”
onto your local desktop with the “-Y” option when running the
command.

Alternatively, you can use remote desktop software like X2Go, to get
a full remote graphical shell.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 8 / 38

Filesystem(s)

Manages the storage space on a device; allows you to create
directories and files to store/access/organize our data

Various filesystems exist/are used throughout the institute: e.g. ext4
(Linux), HFS+ (macOS), NTFS (Windows), NFS & Lustre
(network/SCIAMA)

if you connect a device formatted for a specific filesystem, your OS
has to support it in order to access it

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 9 / 38

Filesystem(s)

Manages the storage space on a device; allows you to create
directories and files to store/access/organize our data

Various filesystems exist/are used throughout the institute: e.g. ext4
(Linux), HFS+ (macOS), NTFS (Windows), NFS & Lustre
(network/SCIAMA)

if you connect a device formatted for a specific filesystem, your OS
has to support it in order to access it

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 9 / 38

Filesystem(s)

Manages the storage space on a device; allows you to create
directories and files to store/access/organize our data

Various filesystems exist/are used throughout the institute: e.g. ext4
(Linux), HFS+ (macOS), NTFS (Windows), NFS & Lustre
(network/SCIAMA)

if you connect a device formatted for a specific filesystem, your OS
has to support it in order to access it

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 9 / 38

Filesystem(s): Layouts

Unix-like filesystems have a similar standard layout to organize their
files (and even other resources like devices) within the filesystem:

/ This is the root. Everything is stored in this top-level
directory

/bin/ Contains common binaries (see also /usr/bin)
/var/ Variable data such as log files
/usr/ Contains binaries, libraries or shared files for installed

user programs
/mnt/ Mount points for e.g. external storage devices (see also

/media/)
/tmp/ Temporary data

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 10 / 38

Filesystem(s): Layouts

Unix-like filesystems have a similar standard layout to organize their
files (and even other resources like devices) within the filesystem:

/ This is the root. Everything is stored in this top-level
directory

/bin/ Contains common binaries (see also /usr/bin)
/var/ Variable data such as log files
/usr/ Contains binaries, libraries or shared files for installed

user programs
/mnt/ Mount points for e.g. external storage devices (see also

/media/)
/tmp/ Temporary data

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 10 / 38

Filesystem(s): Layouts

Unix-like filesystems have a similar standard layout to organize their
files (and even other resources like devices) within the filesystem:

/ This is the root. Everything is stored in this top-level
directory

/bin/ Contains common binaries (see also /usr/bin)

/var/ Variable data such as log files
/usr/ Contains binaries, libraries or shared files for installed

user programs
/mnt/ Mount points for e.g. external storage devices (see also

/media/)
/tmp/ Temporary data

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 10 / 38

Filesystem(s): Layouts

Unix-like filesystems have a similar standard layout to organize their
files (and even other resources like devices) within the filesystem:

/ This is the root. Everything is stored in this top-level
directory

/bin/ Contains common binaries (see also /usr/bin)
/var/ Variable data such as log files

/usr/ Contains binaries, libraries or shared files for installed
user programs

/mnt/ Mount points for e.g. external storage devices (see also
/media/)

/tmp/ Temporary data

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 10 / 38

Filesystem(s): Layouts

Unix-like filesystems have a similar standard layout to organize their
files (and even other resources like devices) within the filesystem:

/ This is the root. Everything is stored in this top-level
directory

/bin/ Contains common binaries (see also /usr/bin)
/var/ Variable data such as log files
/usr/ Contains binaries, libraries or shared files for installed

user programs

/mnt/ Mount points for e.g. external storage devices (see also
/media/)

/tmp/ Temporary data

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 10 / 38

Filesystem(s): Layouts

Unix-like filesystems have a similar standard layout to organize their
files (and even other resources like devices) within the filesystem:

/ This is the root. Everything is stored in this top-level
directory

/bin/ Contains common binaries (see also /usr/bin)
/var/ Variable data such as log files
/usr/ Contains binaries, libraries or shared files for installed

user programs
/mnt/ Mount points for e.g. external storage devices (see also

/media/)

/tmp/ Temporary data

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 10 / 38

Filesystem(s): Layouts

Unix-like filesystems have a similar standard layout to organize their
files (and even other resources like devices) within the filesystem:

/ This is the root. Everything is stored in this top-level
directory

/bin/ Contains common binaries (see also /usr/bin)
/var/ Variable data such as log files
/usr/ Contains binaries, libraries or shared files for installed

user programs
/mnt/ Mount points for e.g. external storage devices (see also

/media/)
/tmp/ Temporary data

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 10 / 38

Filesystem(s): Layouts (cont.)

Some locations may vary depending on the OS, e.g. for the users’
home directories:

/home/ common location on Linux (on our systems, it’s actually
/home/UNI/<username> for your network-based home
directories)

/Users/ location on macOS
/users/ location on SCIAMA

There are also some shortcuts defined:

. points to same directory
.. points to parent directory
∼ location of your home directory

∼<username> location of the home homedirectory of user
<username>

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 11 / 38

Filesystem(s): Layouts (cont.)

Some locations may vary depending on the OS, e.g. for the users’
home directories:

/home/ common location on Linux (on our systems, it’s actually
/home/UNI/<username> for your network-based home
directories)

/Users/ location on macOS
/users/ location on SCIAMA

There are also some shortcuts defined:

. points to same directory
.. points to parent directory
∼ location of your home directory

∼<username> location of the home homedirectory of user
<username>

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 11 / 38

Filesystem(s): File paths

A path to a file or directory can be given as an absolute or a relative
path

an absolute path always starts at the root, e.g.
/home/juser/Documents/test.dat

a relative path is given with the current directory as its base, e.g. if
the current directory is /home/juser, then the relative path to the
same data file goven above would be simply Documents/test.dat,
but also alternatively ./Documents/test.dat or even
../../etc/../home/juser/Documents/test.dat

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 12 / 38

Filesystem(s): File paths

A path to a file or directory can be given as an absolute or a relative
path

an absolute path always starts at the root, e.g.
/home/juser/Documents/test.dat

a relative path is given with the current directory as its base, e.g. if
the current directory is /home/juser, then the relative path to the
same data file goven above would be simply Documents/test.dat,
but also alternatively ./Documents/test.dat or even
../../etc/../home/juser/Documents/test.dat

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 12 / 38

Filesystem(s): File paths

A path to a file or directory can be given as an absolute or a relative
path

an absolute path always starts at the root, e.g.
/home/juser/Documents/test.dat

a relative path is given with the current directory as its base, e.g. if
the current directory is /home/juser, then the relative path to the
same data file goven above would be simply Documents/test.dat,
but also alternatively ./Documents/test.dat or even
../../etc/../home/juser/Documents/test.dat

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 12 / 38

Filesystem(s): File paths with regex/escaping

One or multiple files can be selected by using certain wildcards that
your shell understands and expands, e.g.:

* matches anything
? matches exactly one single character

[<set of characters>] matches one instance of any of the listed
characters

e.g. ’?[a,d][0-3]*’ matches ’aa3blub’, but not ’aA3blub’, ’ac3ee’
or ’ad4’

You can (but should not!) have such special characters as part of
your file/directory name. To tell the shell to not treat them as
wildcards, whitespace, etc., you have to explicitly ’escape’ them, e.g.
to select the file with the name ’sh*tty filename?’, you would have
to write it as ’sh*tty\ filename\?’

alternatively, you can use quote marks i.e. ’’sh*tty filename?’’

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 13 / 38

Filesystem(s): File paths with regex/escaping

One or multiple files can be selected by using certain wildcards that
your shell understands and expands, e.g.:

* matches anything
? matches exactly one single character

[<set of characters>] matches one instance of any of the listed
characters

e.g. ’?[a,d][0-3]*’ matches ’aa3blub’, but not ’aA3blub’, ’ac3ee’
or ’ad4’

You can (but should not!) have such special characters as part of
your file/directory name. To tell the shell to not treat them as
wildcards, whitespace, etc., you have to explicitly ’escape’ them, e.g.
to select the file with the name ’sh*tty filename?’, you would have
to write it as ’sh*tty\ filename\?’

alternatively, you can use quote marks i.e. ’’sh*tty filename?’’

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 13 / 38

Filesystem(s): File paths with regex/escaping

One or multiple files can be selected by using certain wildcards that
your shell understands and expands, e.g.:

* matches anything
? matches exactly one single character

[<set of characters>] matches one instance of any of the listed
characters

e.g. ’?[a,d][0-3]*’ matches ’aa3blub’, but not ’aA3blub’, ’ac3ee’
or ’ad4’

You can (but should not!) have such special characters as part of
your file/directory name. To tell the shell to not treat them as
wildcards, whitespace, etc., you have to explicitly ’escape’ them, e.g.
to select the file with the name ’sh*tty filename?’, you would have
to write it as ’sh*tty\ filename\?’

alternatively, you can use quote marks i.e. ’’sh*tty filename?’’

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 13 / 38

Filesystem(s): File paths with regex/escaping

One or multiple files can be selected by using certain wildcards that
your shell understands and expands, e.g.:

* matches anything
? matches exactly one single character

[<set of characters>] matches one instance of any of the listed
characters

e.g. ’?[a,d][0-3]*’ matches ’aa3blub’, but not ’aA3blub’, ’ac3ee’
or ’ad4’

You can (but should not!) have such special characters as part of
your file/directory name. To tell the shell to not treat them as
wildcards, whitespace, etc., you have to explicitly ’escape’ them, e.g.
to select the file with the name ’sh*tty filename?’, you would have
to write it as ’sh*tty\ filename\?’

alternatively, you can use quote marks i.e. ’’sh*tty filename?’’

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 13 / 38

Filesystem(s): Management

When working on the CLI, there are various built-in commands, you
can use to navigate and manipulate the filesystem (again, those are
identical or very similar on most UNIX-based shells):

cd <path> changes current directory to that given by abs. or rel.
path (if none is given, it changes into home dir)

ls <path> lists files at given path (by default current dir)
mv <src path> <target path> moves file(s) given by source path to

target path (if target is directory, files keep their names
and are moved into it)

cp <src path> <target path> same as in mv, but keeps source file
rm <path> removes file(s) given by path (if target is directory, you

will have to use ’-r’ to remove everything in it recusively)
mkdir,rmdir creates/removes (empty) directories (if not empty, use

rm instead)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 14 / 38

Filesystem(s): Management

When working on the CLI, there are various built-in commands, you
can use to navigate and manipulate the filesystem (again, those are
identical or very similar on most UNIX-based shells):

cd <path> changes current directory to that given by abs. or rel.
path (if none is given, it changes into home dir)

ls <path> lists files at given path (by default current dir)
mv <src path> <target path> moves file(s) given by source path to

target path (if target is directory, files keep their names
and are moved into it)

cp <src path> <target path> same as in mv, but keeps source file
rm <path> removes file(s) given by path (if target is directory, you

will have to use ’-r’ to remove everything in it recusively)
mkdir,rmdir creates/removes (empty) directories (if not empty, use

rm instead)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 14 / 38

Filesystem(s): Management

When working on the CLI, there are various built-in commands, you
can use to navigate and manipulate the filesystem (again, those are
identical or very similar on most UNIX-based shells):

cd <path> changes current directory to that given by abs. or rel.
path (if none is given, it changes into home dir)

ls <path> lists files at given path (by default current dir)

mv <src path> <target path> moves file(s) given by source path to
target path (if target is directory, files keep their names
and are moved into it)

cp <src path> <target path> same as in mv, but keeps source file
rm <path> removes file(s) given by path (if target is directory, you

will have to use ’-r’ to remove everything in it recusively)
mkdir,rmdir creates/removes (empty) directories (if not empty, use

rm instead)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 14 / 38

Filesystem(s): Management

When working on the CLI, there are various built-in commands, you
can use to navigate and manipulate the filesystem (again, those are
identical or very similar on most UNIX-based shells):

cd <path> changes current directory to that given by abs. or rel.
path (if none is given, it changes into home dir)

ls <path> lists files at given path (by default current dir)
mv <src path> <target path> moves file(s) given by source path to

target path (if target is directory, files keep their names
and are moved into it)

cp <src path> <target path> same as in mv, but keeps source file
rm <path> removes file(s) given by path (if target is directory, you

will have to use ’-r’ to remove everything in it recusively)
mkdir,rmdir creates/removes (empty) directories (if not empty, use

rm instead)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 14 / 38

Filesystem(s): Management

When working on the CLI, there are various built-in commands, you
can use to navigate and manipulate the filesystem (again, those are
identical or very similar on most UNIX-based shells):

cd <path> changes current directory to that given by abs. or rel.
path (if none is given, it changes into home dir)

ls <path> lists files at given path (by default current dir)
mv <src path> <target path> moves file(s) given by source path to

target path (if target is directory, files keep their names
and are moved into it)

cp <src path> <target path> same as in mv, but keeps source file

rm <path> removes file(s) given by path (if target is directory, you
will have to use ’-r’ to remove everything in it recusively)

mkdir,rmdir creates/removes (empty) directories (if not empty, use
rm instead)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 14 / 38

Filesystem(s): Management

When working on the CLI, there are various built-in commands, you
can use to navigate and manipulate the filesystem (again, those are
identical or very similar on most UNIX-based shells):

cd <path> changes current directory to that given by abs. or rel.
path (if none is given, it changes into home dir)

ls <path> lists files at given path (by default current dir)
mv <src path> <target path> moves file(s) given by source path to

target path (if target is directory, files keep their names
and are moved into it)

cp <src path> <target path> same as in mv, but keeps source file
rm <path> removes file(s) given by path (if target is directory, you

will have to use ’-r’ to remove everything in it recusively)

mkdir,rmdir creates/removes (empty) directories (if not empty, use
rm instead)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 14 / 38

Filesystem(s): Management

When working on the CLI, there are various built-in commands, you
can use to navigate and manipulate the filesystem (again, those are
identical or very similar on most UNIX-based shells):

cd <path> changes current directory to that given by abs. or rel.
path (if none is given, it changes into home dir)

ls <path> lists files at given path (by default current dir)
mv <src path> <target path> moves file(s) given by source path to

target path (if target is directory, files keep their names
and are moved into it)

cp <src path> <target path> same as in mv, but keeps source file
rm <path> removes file(s) given by path (if target is directory, you

will have to use ’-r’ to remove everything in it recusively)
mkdir,rmdir creates/removes (empty) directories (if not empty, use

rm instead)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 14 / 38

Filesystem(s): Management (cont.)

There is a very powerful tool to search for folders/files called find

find <options> <starting path> <expression>

e.g. to find all .jpg files in the /home and sub-dirextories.

find /home -name *.jpg

Another useful tool is file, which analyses files and tries to
determine the type of their content

file <path to file/folder>

There are also tools to give you informations about used/available
disk space:

df tells you how much space is left on the disks
du <path> tells you how much space is used by given file/directory

results are given in bytes; add ’-h’ argument to get “human-readable”
numbers with SI-prefixes

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 15 / 38

Filesystem(s): Management (cont.)

There is a very powerful tool to search for folders/files called find

find <options> <starting path> <expression>

e.g. to find all .jpg files in the /home and sub-dirextories.

find /home -name *.jpg

Another useful tool is file, which analyses files and tries to
determine the type of their content

file <path to file/folder>

There are also tools to give you informations about used/available
disk space:

df tells you how much space is left on the disks
du <path> tells you how much space is used by given file/directory

results are given in bytes; add ’-h’ argument to get “human-readable”
numbers with SI-prefixes

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 15 / 38

Filesystem(s): Hidden files

any file with a leading ’.’ is treated as a hidden file, i.e. it won’t show
up in the default listing of ls

this includes many config files in your home directory

if you want to list them, you have to use ls with the -a argument, or
configure your graphical file manager to also show hidden files

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 16 / 38

Filesystem(s): Hidden files

any file with a leading ’.’ is treated as a hidden file, i.e. it won’t show
up in the default listing of ls

this includes many config files in your home directory

if you want to list them, you have to use ls with the -a argument, or
configure your graphical file manager to also show hidden files

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 16 / 38

Filesystem(s): Hidden files

any file with a leading ’.’ is treated as a hidden file, i.e. it won’t show
up in the default listing of ls

this includes many config files in your home directory

if you want to list them, you have to use ls with the -a argument, or
configure your graphical file manager to also show hidden files

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 16 / 38

Filesystem(s): (Hidden) Files - Exercise

Listing files

1 try to list all files/folder, both normal and hidden in your home
directory using the ls command

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 17 / 38

Filesystem(s): Ownership/Permissions

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 18 / 38

Filesystem(s): Ownership/Permissions

each file/directory belongs to a user and group that is listed with e.g.
ls -l

every user also belongs to one or multiple groups (use id

<username> to list them)

the filesystem distinguishes between three different permission types
for each file/directory:

r(ead) allows to read content of file / to list content of
directory

w(rite) allows to change content of file / to manipulate file list
of directory (i.e. create, remove, rename files)

(e)x(ecute) allows to execute file / to enter directory

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 18 / 38

Filesystem(s): Ownership/Permissions

each file/directory belongs to a user and group that is listed with e.g.
ls -l

every user also belongs to one or multiple groups (use id

<username> to list them)

the filesystem distinguishes between three different permission types
for each file/directory:

r(ead) allows to read content of file / to list content of
directory

w(rite) allows to change content of file / to manipulate file list
of directory (i.e. create, remove, rename files)

(e)x(ecute) allows to execute file / to enter directory

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 18 / 38

Filesystem(s): Ownership/Permissions

each file/directory belongs to a user and group that is listed with e.g.
ls -l

every user also belongs to one or multiple groups (use id

<username> to list them)

the filesystem distinguishes between three different permission types
for each file/directory:

r(ead) allows to read content of file / to list content of
directory

w(rite) allows to change content of file / to manipulate file list
of directory (i.e. create, remove, rename files)

(e)x(ecute) allows to execute file / to enter directory

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 18 / 38

Filesystem(s): Ownership/Permissions

ownerships/permissions can be changed using the commands chown,
chgrp and chmod respectively

for changing permissions, you can either add/remove permissions
using a string e.g. chmod g+rw <filename> for adding read/write
permission to the file for the group who owns it

alternative you can set the permissions for user/group/others using a
numeral expression based on a bit mask (r=4,w=2,x=1): so set the
permissions for ’test.dat’ as shown, you would have to use chmod 741

test.dat

all three commands support the argument ’-R’ for a directory which
changes the ownership/permission for all files/dirs in it recursively

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 19 / 38

Filesystem(s): Ownership/Permissions

ownerships/permissions can be changed using the commands chown,
chgrp and chmod respectively

for changing permissions, you can either add/remove permissions
using a string e.g. chmod g+rw <filename> for adding read/write
permission to the file for the group who owns it

alternative you can set the permissions for user/group/others using a
numeral expression based on a bit mask (r=4,w=2,x=1): so set the
permissions for ’test.dat’ as shown, you would have to use chmod 741

test.dat

all three commands support the argument ’-R’ for a directory which
changes the ownership/permission for all files/dirs in it recursively

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 19 / 38

Filesystem(s): Ownership/Permissions

ownerships/permissions can be changed using the commands chown,
chgrp and chmod respectively

for changing permissions, you can either add/remove permissions
using a string e.g. chmod g+rw <filename> for adding read/write
permission to the file for the group who owns it

alternative you can set the permissions for user/group/others using a
numeral expression based on a bit mask (r=4,w=2,x=1): so set the
permissions for ’test.dat’ as shown, you would have to use chmod 741

test.dat

all three commands support the argument ’-R’ for a directory which
changes the ownership/permission for all files/dirs in it recursively

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 19 / 38

Filesystem(s): Ownership/Permissions

ownerships/permissions can be changed using the commands chown,
chgrp and chmod respectively

for changing permissions, you can either add/remove permissions
using a string e.g. chmod g+rw <filename> for adding read/write
permission to the file for the group who owns it

alternative you can set the permissions for user/group/others using a
numeral expression based on a bit mask (r=4,w=2,x=1): so set the
permissions for ’test.dat’ as shown, you would have to use chmod 741

test.dat

all three commands support the argument ’-R’ for a directory which
changes the ownership/permission for all files/dirs in it recursively

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 19 / 38

Filesystem(s): Ownership/Permissions - Exercise

Changing permissions and ownership

1 create an empty file using

touch test.dat

2 Check its current permissions and ownership

3 Now remove all permissions for anyone but the owner.

4 Try to open the file e.g. with text editor gedit and edit it and save
the changes. Now remove the write permission and try to edit/save it
again.

5 Now close the editor, change the ownership of that file to e.g. ’root’
and try to open it again.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 20 / 38

Pipes and input/output control

standard streams

STDIN is usually your keyboard input, but be also redirected
output from other devices/a file/other program

STDOUT usually output shown directly in the terminal, but can
be (re)directed into a file/device/program

STDERR second type of output used for important status/error
message usually output shown directly in the terminal
(can also be redirected)

’|’ creates a pipe between the STDOUT of one program and the
STDIN of another, e.g. ls | grep blub

’> <filename>’ can be used to direct the STDOUT into the
specified file (will overwrite existing content, for appending use ’>>’
instead), e.g. ./my program.sh > output.dat

’< <filename>’ can be used to use the content of a file for STDIN,
e.g. qsub < submission.batch

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 21 / 38

Pipes and input/output control

standard streams

STDIN is usually your keyboard input, but be also redirected
output from other devices/a file/other program

STDOUT usually output shown directly in the terminal, but can
be (re)directed into a file/device/program

STDERR second type of output used for important status/error
message usually output shown directly in the terminal
(can also be redirected)

’|’ creates a pipe between the STDOUT of one program and the
STDIN of another, e.g. ls | grep blub

’> <filename>’ can be used to direct the STDOUT into the
specified file (will overwrite existing content, for appending use ’>>’
instead), e.g. ./my program.sh > output.dat

’< <filename>’ can be used to use the content of a file for STDIN,
e.g. qsub < submission.batch

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 21 / 38

Pipes and input/output control

standard streams

STDIN is usually your keyboard input, but be also redirected
output from other devices/a file/other program

STDOUT usually output shown directly in the terminal, but can
be (re)directed into a file/device/program

STDERR second type of output used for important status/error
message usually output shown directly in the terminal
(can also be redirected)

’|’ creates a pipe between the STDOUT of one program and the
STDIN of another, e.g. ls | grep blub

’> <filename>’ can be used to direct the STDOUT into the
specified file (will overwrite existing content, for appending use ’>>’
instead), e.g. ./my program.sh > output.dat

’< <filename>’ can be used to use the content of a file for STDIN,
e.g. qsub < submission.batch

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 21 / 38

Pipes and input/output control

standard streams

STDIN is usually your keyboard input, but be also redirected
output from other devices/a file/other program

STDOUT usually output shown directly in the terminal, but can
be (re)directed into a file/device/program

STDERR second type of output used for important status/error
message usually output shown directly in the terminal
(can also be redirected)

’|’ creates a pipe between the STDOUT of one program and the
STDIN of another, e.g. ls | grep blub

’> <filename>’ can be used to direct the STDOUT into the
specified file (will overwrite existing content, for appending use ’>>’
instead), e.g. ./my program.sh > output.dat

’< <filename>’ can be used to use the content of a file for STDIN,
e.g. qsub < submission.batch

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 21 / 38

Printing

ICG printers (ICGcolor, ICGbw, ICGsupport) should be pre-configured
on our Linux Desktops/Laptops

lpr -P <printer name> <filename> can directly print
postscript/ascii files from the CLI

lpq -P <printer name> lists all jobs in the printer queue

lprm -P <printer name> <job nr> removes specific job from the
printer queue

you can always print from graphical programs (Acrobat, GhostView,
text editors, etc.)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 22 / 38

Printing

ICG printers (ICGcolor, ICGbw, ICGsupport) should be pre-configured
on our Linux Desktops/Laptops

lpr -P <printer name> <filename> can directly print
postscript/ascii files from the CLI

lpq -P <printer name> lists all jobs in the printer queue

lprm -P <printer name> <job nr> removes specific job from the
printer queue

you can always print from graphical programs (Acrobat, GhostView,
text editors, etc.)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 22 / 38

Printing

ICG printers (ICGcolor, ICGbw, ICGsupport) should be pre-configured
on our Linux Desktops/Laptops

lpr -P <printer name> <filename> can directly print
postscript/ascii files from the CLI

lpq -P <printer name> lists all jobs in the printer queue

lprm -P <printer name> <job nr> removes specific job from the
printer queue

you can always print from graphical programs (Acrobat, GhostView,
text editors, etc.)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 22 / 38

Printing

ICG printers (ICGcolor, ICGbw, ICGsupport) should be pre-configured
on our Linux Desktops/Laptops

lpr -P <printer name> <filename> can directly print
postscript/ascii files from the CLI

lpq -P <printer name> lists all jobs in the printer queue

lprm -P <printer name> <job nr> removes specific job from the
printer queue

you can always print from graphical programs (Acrobat, GhostView,
text editors, etc.)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 22 / 38

Printing

ICG printers (ICGcolor, ICGbw, ICGsupport) should be pre-configured
on our Linux Desktops/Laptops

lpr -P <printer name> <filename> can directly print
postscript/ascii files from the CLI

lpq -P <printer name> lists all jobs in the printer queue

lprm -P <printer name> <job nr> removes specific job from the
printer queue

you can always print from graphical programs (Acrobat, GhostView,
text editors, etc.)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 22 / 38

Software

Software may be installed from managed package trees using tools
like e.g. aptitude or yum on Linux (or graphical programs like
Synaptic) or e.g. homebrew on macOS

usually requires administrator rights, which you may have (or obtain
with sudo) on your own private Linux, but won’t have on the
managed workstations/laptops in the institute (ask icg-computing if
you need any software installed)

Alternatively, software/libraries can be compiled from source code.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 23 / 38

Software

Software may be installed from managed package trees using tools
like e.g. aptitude or yum on Linux (or graphical programs like
Synaptic) or e.g. homebrew on macOS

usually requires administrator rights, which you may have (or obtain
with sudo) on your own private Linux, but won’t have on the
managed workstations/laptops in the institute (ask icg-computing if
you need any software installed)

Alternatively, software/libraries can be compiled from source code.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 23 / 38

Software

Software may be installed from managed package trees using tools
like e.g. aptitude or yum on Linux (or graphical programs like
Synaptic) or e.g. homebrew on macOS

usually requires administrator rights, which you may have (or obtain
with sudo) on your own private Linux, but won’t have on the
managed workstations/laptops in the institute (ask icg-computing if
you need any software installed)

Alternatively, software/libraries can be compiled from source code.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 23 / 38

Software: How to build & run it

1 Obtaining source code

2 Compiling/Installing software

3 Running software

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 24 / 38

Software: Download/File compression

You can download software directly from the internet using the
command line by either accessing a version control repository (see
below) or using e.g. wget:

wget <URL to source package>

when dealing with downloaded source code, you usually will encounter
it in form of a (gzip-compressed) tar (*.tar,*.tgz,*.tar.gz,*.tar.bz2)
archive

you can create such a compressed archive yourself using tar cvzf

<archive filename> <list of files to be included>

to uncompress/unpack a gzip-compressed tar archive, use tar xvzf

<archive filename> <list of files to be included> (if
bzip2-compressed, replace z with j, or omit it for uncompressed
archives)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 25 / 38

Software: Download/File compression

You can download software directly from the internet using the
command line by either accessing a version control repository (see
below) or using e.g. wget:

wget <URL to source package>

when dealing with downloaded source code, you usually will encounter
it in form of a (gzip-compressed) tar (*.tar,*.tgz,*.tar.gz,*.tar.bz2)
archive

you can create such a compressed archive yourself using tar cvzf

<archive filename> <list of files to be included>

to uncompress/unpack a gzip-compressed tar archive, use tar xvzf

<archive filename> <list of files to be included> (if
bzip2-compressed, replace z with j, or omit it for uncompressed
archives)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 25 / 38

Software: Download/File compression

You can download software directly from the internet using the
command line by either accessing a version control repository (see
below) or using e.g. wget:

wget <URL to source package>

when dealing with downloaded source code, you usually will encounter
it in form of a (gzip-compressed) tar (*.tar,*.tgz,*.tar.gz,*.tar.bz2)
archive

you can create such a compressed archive yourself using tar cvzf

<archive filename> <list of files to be included>

to uncompress/unpack a gzip-compressed tar archive, use tar xvzf

<archive filename> <list of files to be included> (if
bzip2-compressed, replace z with j, or omit it for uncompressed
archives)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 25 / 38

Software: Download/File compression - Exercise

Source from website
1 Download the CLASS source code directly from the website

http://class-code.net using wget (Tipp: Obtain the direct URL
from right-clicking on the link and copying the ’Link Location’:

wget http://lesgourg...

2 Unpack the compressed tar archive

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 26 / 38

Software: Source/Version control

lots of choices (cvs, s(ub)v(ersio)n, etc.) for version control, but
nowadays mostly git used

lets you to keep track of changes to files (e.g. source code, tex
documents) to e.g. compare or revert them, use branches/forks

if remote repository is used (e.g. on github or bitbucket servers),
great way to keep backups and share/collaborate with other
programmers/writers/users

for more details: see data language lecture

if you want to obtain the most recent version of the source code for a
program, you can often find it on such a server. To get a copy e.g.
from a git repository, you would simply call:

git clone <URL to repository>

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 27 / 38

Software: Source/Version control

lots of choices (cvs, s(ub)v(ersio)n, etc.) for version control, but
nowadays mostly git used

lets you to keep track of changes to files (e.g. source code, tex
documents) to e.g. compare or revert them, use branches/forks

if remote repository is used (e.g. on github or bitbucket servers),
great way to keep backups and share/collaborate with other
programmers/writers/users

for more details: see data language lecture

if you want to obtain the most recent version of the source code for a
program, you can often find it on such a server. To get a copy e.g.
from a git repository, you would simply call:

git clone <URL to repository>

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 27 / 38

Software: Source/Version control

lots of choices (cvs, s(ub)v(ersio)n, etc.) for version control, but
nowadays mostly git used

lets you to keep track of changes to files (e.g. source code, tex
documents) to e.g. compare or revert them, use branches/forks

if remote repository is used (e.g. on github or bitbucket servers),
great way to keep backups and share/collaborate with other
programmers/writers/users

for more details: see data language lecture

if you want to obtain the most recent version of the source code for a
program, you can often find it on such a server. To get a copy e.g.
from a git repository, you would simply call:

git clone <URL to repository>

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 27 / 38

Software: Source/Version control

lots of choices (cvs, s(ub)v(ersio)n, etc.) for version control, but
nowadays mostly git used

lets you to keep track of changes to files (e.g. source code, tex
documents) to e.g. compare or revert them, use branches/forks

if remote repository is used (e.g. on github or bitbucket servers),
great way to keep backups and share/collaborate with other
programmers/writers/users

for more details: see data language lecture

if you want to obtain the most recent version of the source code for a
program, you can often find it on such a server. To get a copy e.g.
from a git repository, you would simply call:

git clone <URL to repository>

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 27 / 38

Software: Source/Version control

lots of choices (cvs, s(ub)v(ersio)n, etc.) for version control, but
nowadays mostly git used

lets you to keep track of changes to files (e.g. source code, tex
documents) to e.g. compare or revert them, use branches/forks

if remote repository is used (e.g. on github or bitbucket servers),
great way to keep backups and share/collaborate with other
programmers/writers/users

for more details: see data language lecture

if you want to obtain the most recent version of the source code for a
program, you can often find it on such a server. To get a copy e.g.
from a git repository, you would simply call:

git clone <URL to repository>

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 27 / 38

Software: Source/Version control - Exercise

Source from git

Now try to obtain the CLASS source directly from the git repository (Tipp:
You can find the link to the repository on the website and then the url to
the repository by clicking the green ’Clone or download’ button)

git clone ...

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 28 / 38

Software: Compiling/Installation

Most software distributed in source code provide Makefiles or
supports automake to automatically create optimized Makefiles

In the latter case, change into the directory where the source code is
located and call ./configure to trigger the generation/configuration
process for the Makefile (usually, you can define the installation path
with the additional argument --prefix=<installation path>)

once you have a Makefile (or in case it was already shipped with the
source), run the command make on the CLI. It uses the instructions in
the Makefile to compile the source code.

Install the software: make install (this may need administrator
rights depending on the installation path, by default system
directories)

In any case, check the README or INSTALL file shipped with the
source for further information on how to compile/install the software

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 29 / 38

Software: Compiling/Installation

Most software distributed in source code provide Makefiles or
supports automake to automatically create optimized Makefiles

In the latter case, change into the directory where the source code is
located and call ./configure to trigger the generation/configuration
process for the Makefile (usually, you can define the installation path
with the additional argument --prefix=<installation path>)

once you have a Makefile (or in case it was already shipped with the
source), run the command make on the CLI. It uses the instructions in
the Makefile to compile the source code.

Install the software: make install (this may need administrator
rights depending on the installation path, by default system
directories)

In any case, check the README or INSTALL file shipped with the
source for further information on how to compile/install the software

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 29 / 38

Software: Compiling/Installation

Most software distributed in source code provide Makefiles or
supports automake to automatically create optimized Makefiles

In the latter case, change into the directory where the source code is
located and call ./configure to trigger the generation/configuration
process for the Makefile (usually, you can define the installation path
with the additional argument --prefix=<installation path>)

once you have a Makefile (or in case it was already shipped with the
source), run the command make on the CLI. It uses the instructions in
the Makefile to compile the source code.

Install the software: make install (this may need administrator
rights depending on the installation path, by default system
directories)

In any case, check the README or INSTALL file shipped with the
source for further information on how to compile/install the software

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 29 / 38

Software: Compiling/Installation

Most software distributed in source code provide Makefiles or
supports automake to automatically create optimized Makefiles

In the latter case, change into the directory where the source code is
located and call ./configure to trigger the generation/configuration
process for the Makefile (usually, you can define the installation path
with the additional argument --prefix=<installation path>)

once you have a Makefile (or in case it was already shipped with the
source), run the command make on the CLI. It uses the instructions in
the Makefile to compile the source code.

Install the software: make install (this may need administrator
rights depending on the installation path, by default system
directories)

In any case, check the README or INSTALL file shipped with the
source for further information on how to compile/install the software

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 29 / 38

Software: Compiling/Installation

Most software distributed in source code provide Makefiles or
supports automake to automatically create optimized Makefiles

In the latter case, change into the directory where the source code is
located and call ./configure to trigger the generation/configuration
process for the Makefile (usually, you can define the installation path
with the additional argument --prefix=<installation path>)

once you have a Makefile (or in case it was already shipped with the
source), run the command make on the CLI. It uses the instructions in
the Makefile to compile the source code.

Install the software: make install (this may need administrator
rights depending on the installation path, by default system
directories)

In any case, check the README or INSTALL file shipped with the
source for further information on how to compile/install the software

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 29 / 38

Software: Compiling/Installation - Exercise

Compiling CLASS

Check the README file for instructions on how to compile the code and
follow them. You should end up with a class binary file. Test the binary
using

./class explanatory.ini

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 30 / 38

Software: Environment variables

Many programs make use of so-called environment variables for
configuration and/or control

Important ones are e.g. HOME (pointing to your home dir), PATH (used
by the shell to find binaries) or LD LIBRARY PATH (used by the linker
to find shared libraries)

In bash, you can list them using env, set them using export

<variable name>=<value> and reference to them by $<variable

name>, e.g.

export PATH=$HOME/bin:$PATH

if you installed your software into a custom directory, you have to
make sure that the binaries and libraries are in a directory listed in
PATH and (LD)LIBRARY PATH respectively.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 31 / 38

Software: Environment variables

Many programs make use of so-called environment variables for
configuration and/or control

Important ones are e.g. HOME (pointing to your home dir), PATH (used
by the shell to find binaries) or LD LIBRARY PATH (used by the linker
to find shared libraries)

In bash, you can list them using env, set them using export

<variable name>=<value> and reference to them by $<variable

name>, e.g.

export PATH=$HOME/bin:$PATH

if you installed your software into a custom directory, you have to
make sure that the binaries and libraries are in a directory listed in
PATH and (LD)LIBRARY PATH respectively.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 31 / 38

Software: Environment variables

Many programs make use of so-called environment variables for
configuration and/or control

Important ones are e.g. HOME (pointing to your home dir), PATH (used
by the shell to find binaries) or LD LIBRARY PATH (used by the linker
to find shared libraries)

In bash, you can list them using env, set them using export

<variable name>=<value> and reference to them by $<variable

name>, e.g.

export PATH=$HOME/bin:$PATH

if you installed your software into a custom directory, you have to
make sure that the binaries and libraries are in a directory listed in
PATH and (LD)LIBRARY PATH respectively.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 31 / 38

Software: Environment variables

Many programs make use of so-called environment variables for
configuration and/or control

Important ones are e.g. HOME (pointing to your home dir), PATH (used
by the shell to find binaries) or LD LIBRARY PATH (used by the linker
to find shared libraries)

In bash, you can list them using env, set them using export

<variable name>=<value> and reference to them by $<variable

name>, e.g.

export PATH=$HOME/bin:$PATH

if you installed your software into a custom directory, you have to
make sure that the binaries and libraries are in a directory listed in
PATH and (LD)LIBRARY PATH respectively.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 31 / 38

Software: Environment variables - Exercise

Adding a program to PATH

Copy the explanatory.ini into your home dir

cp explanatory.ini /

Change now into your home dir

cd

In order to run class, you would now need to use the full path to the
binary. But instead, try to add the CLASS folder containing the binary to
the PATH as described above. Now try to run class as a simple command

class explanatory.ini

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 32 / 38

Process/Job control: Jobs

you start a new process/job in a shell each time, you execute a
command/program.

Jobs are groups of processes started by a single command (e.g. a
script or program which starts itself a couple of processes), you can
list(and manipulate) them for the current shell with the command
jobs

Jobs are by default running in the foreground, blocking the shell until
it is finished/terminated (actually catching the STDIO of the shell)

You can make run in the background by adding ’&’ at the end of the
command, e.g. xterm & (obviously do not send programs into the
background that need user interactions!)

fg [<jobnumber>] will make it come to the foreground again

CTRL-z suspends a foreground job (it will be stopped then and you
can use bg [<jobnumber>] to make it run in the background)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 33 / 38

Process/Job control: Jobs

you start a new process/job in a shell each time, you execute a
command/program.

Jobs are groups of processes started by a single command (e.g. a
script or program which starts itself a couple of processes), you can
list(and manipulate) them for the current shell with the command
jobs

Jobs are by default running in the foreground, blocking the shell until
it is finished/terminated (actually catching the STDIO of the shell)

You can make run in the background by adding ’&’ at the end of the
command, e.g. xterm & (obviously do not send programs into the
background that need user interactions!)

fg [<jobnumber>] will make it come to the foreground again

CTRL-z suspends a foreground job (it will be stopped then and you
can use bg [<jobnumber>] to make it run in the background)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 33 / 38

Process/Job control: Jobs

you start a new process/job in a shell each time, you execute a
command/program.

Jobs are groups of processes started by a single command (e.g. a
script or program which starts itself a couple of processes), you can
list(and manipulate) them for the current shell with the command
jobs

Jobs are by default running in the foreground, blocking the shell until
it is finished/terminated (actually catching the STDIO of the shell)

You can make run in the background by adding ’&’ at the end of the
command, e.g. xterm & (obviously do not send programs into the
background that need user interactions!)

fg [<jobnumber>] will make it come to the foreground again

CTRL-z suspends a foreground job (it will be stopped then and you
can use bg [<jobnumber>] to make it run in the background)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 33 / 38

Process/Job control: Jobs

you start a new process/job in a shell each time, you execute a
command/program.

Jobs are groups of processes started by a single command (e.g. a
script or program which starts itself a couple of processes), you can
list(and manipulate) them for the current shell with the command
jobs

Jobs are by default running in the foreground, blocking the shell until
it is finished/terminated (actually catching the STDIO of the shell)

You can make run in the background by adding ’&’ at the end of the
command, e.g. xterm & (obviously do not send programs into the
background that need user interactions!)

fg [<jobnumber>] will make it come to the foreground again

CTRL-z suspends a foreground job (it will be stopped then and you
can use bg [<jobnumber>] to make it run in the background)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 33 / 38

Process/Job control: Jobs

you start a new process/job in a shell each time, you execute a
command/program.

Jobs are groups of processes started by a single command (e.g. a
script or program which starts itself a couple of processes), you can
list(and manipulate) them for the current shell with the command
jobs

Jobs are by default running in the foreground, blocking the shell until
it is finished/terminated (actually catching the STDIO of the shell)

You can make run in the background by adding ’&’ at the end of the
command, e.g. xterm & (obviously do not send programs into the
background that need user interactions!)

fg [<jobnumber>] will make it come to the foreground again

CTRL-z suspends a foreground job (it will be stopped then and you
can use bg [<jobnumber>] to make it run in the background)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 33 / 38

Process/Job control: Jobs

you start a new process/job in a shell each time, you execute a
command/program.

Jobs are groups of processes started by a single command (e.g. a
script or program which starts itself a couple of processes), you can
list(and manipulate) them for the current shell with the command
jobs

Jobs are by default running in the foreground, blocking the shell until
it is finished/terminated (actually catching the STDIO of the shell)

You can make run in the background by adding ’&’ at the end of the
command, e.g. xterm & (obviously do not send programs into the
background that need user interactions!)

fg [<jobnumber>] will make it come to the foreground again

CTRL-z suspends a foreground job (it will be stopped then and you
can use bg [<jobnumber>] to make it run in the background)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 33 / 38

Process/Job control: Processes
you can also interact with processes (but be careful, that may
interrupt jobs or vital functions of your OS)

you can get a list of all processes currently running on the system by
using ps [aux] or top

each process has a p(rocess)id as well as a p(arent)pid of the process
who spawned it

you can send various signals to processes using the kill

[<signal>] <pid> command:

SIGTERM (15) (default) - Termination signal i.e. asks running
process to terminate itself.

SIGINT (2) - Interrupt signal (same as CTRL-c on keyboard;
usually same effect as SIGTERM).

SIGKILL (9) - Kill signal i.e. kill running process.
SIGSTOP (19) - Stop process.
SIGCONT (18) - Continue process if stopped.

e.g. kill -19 1923 stops the process with the pid 1923, while kill

-SIGCONT 1923 will resume it again.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 34 / 38

Process/Job control: Processes
you can also interact with processes (but be careful, that may
interrupt jobs or vital functions of your OS)

you can get a list of all processes currently running on the system by
using ps [aux] or top

each process has a p(rocess)id as well as a p(arent)pid of the process
who spawned it

you can send various signals to processes using the kill

[<signal>] <pid> command:

SIGTERM (15) (default) - Termination signal i.e. asks running
process to terminate itself.

SIGINT (2) - Interrupt signal (same as CTRL-c on keyboard;
usually same effect as SIGTERM).

SIGKILL (9) - Kill signal i.e. kill running process.
SIGSTOP (19) - Stop process.
SIGCONT (18) - Continue process if stopped.

e.g. kill -19 1923 stops the process with the pid 1923, while kill

-SIGCONT 1923 will resume it again.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 34 / 38

Process/Job control: Processes
you can also interact with processes (but be careful, that may
interrupt jobs or vital functions of your OS)

you can get a list of all processes currently running on the system by
using ps [aux] or top

each process has a p(rocess)id as well as a p(arent)pid of the process
who spawned it

you can send various signals to processes using the kill

[<signal>] <pid> command:

SIGTERM (15) (default) - Termination signal i.e. asks running
process to terminate itself.

SIGINT (2) - Interrupt signal (same as CTRL-c on keyboard;
usually same effect as SIGTERM).

SIGKILL (9) - Kill signal i.e. kill running process.
SIGSTOP (19) - Stop process.
SIGCONT (18) - Continue process if stopped.

e.g. kill -19 1923 stops the process with the pid 1923, while kill

-SIGCONT 1923 will resume it again.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 34 / 38

Process/Job control: Processes
you can also interact with processes (but be careful, that may
interrupt jobs or vital functions of your OS)

you can get a list of all processes currently running on the system by
using ps [aux] or top

each process has a p(rocess)id as well as a p(arent)pid of the process
who spawned it

you can send various signals to processes using the kill

[<signal>] <pid> command:

SIGTERM (15) (default) - Termination signal i.e. asks running
process to terminate itself.

SIGINT (2) - Interrupt signal (same as CTRL-c on keyboard;
usually same effect as SIGTERM).

SIGKILL (9) - Kill signal i.e. kill running process.
SIGSTOP (19) - Stop process.
SIGCONT (18) - Continue process if stopped.

e.g. kill -19 1923 stops the process with the pid 1923, while kill

-SIGCONT 1923 will resume it again.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 34 / 38

Process/Job control: Processes
you can also interact with processes (but be careful, that may
interrupt jobs or vital functions of your OS)

you can get a list of all processes currently running on the system by
using ps [aux] or top

each process has a p(rocess)id as well as a p(arent)pid of the process
who spawned it

you can send various signals to processes using the kill

[<signal>] <pid> command:

SIGTERM (15) (default) - Termination signal i.e. asks running
process to terminate itself.

SIGINT (2) - Interrupt signal (same as CTRL-c on keyboard;
usually same effect as SIGTERM).

SIGKILL (9) - Kill signal i.e. kill running process.
SIGSTOP (19) - Stop process.
SIGCONT (18) - Continue process if stopped.

e.g. kill -19 1923 stops the process with the pid 1923, while kill

-SIGCONT 1923 will resume it again.

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 34 / 38

Process/Job control: Processes
you can also interact with processes (but be careful, that may
interrupt jobs or vital functions of your OS)

you can get a list of all processes currently running on the system by
using ps [aux] or top

each process has a p(rocess)id as well as a p(arent)pid of the process
who spawned it

you can send various signals to processes using the kill

[<signal>] <pid> command:

SIGTERM (15) (default) - Termination signal i.e. asks running
process to terminate itself.

SIGINT (2) - Interrupt signal (same as CTRL-c on keyboard;
usually same effect as SIGTERM).

SIGKILL (9) - Kill signal i.e. kill running process.
SIGSTOP (19) - Stop process.
SIGCONT (18) - Continue process if stopped.

e.g. kill -19 1923 stops the process with the pid 1923, while kill

-SIGCONT 1923 will resume it again.
JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 34 / 38

Process/Job control: Processes (cont.)

you can also renice processes to affect how greedy they are when
using the computation time (e.g. a non-urgent non-interactive
calculation does not have to be responsive to sudden new input and
also does not need to finish as quickly as possible)

renice <niceness> <pid> can be used to make jobs “nicer” or
“greedier” (the latter usually requires admin rights)

Levels of niceness run from -20 to +19, 0 is the default level

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 35 / 38

Process/Job control: Processes (cont.)

you can also renice processes to affect how greedy they are when
using the computation time (e.g. a non-urgent non-interactive
calculation does not have to be responsive to sudden new input and
also does not need to finish as quickly as possible)

renice <niceness> <pid> can be used to make jobs “nicer” or
“greedier” (the latter usually requires admin rights)

Levels of niceness run from -20 to +19, 0 is the default level

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 35 / 38

Process/Job control: Processes (cont.)

you can also renice processes to affect how greedy they are when
using the computation time (e.g. a non-urgent non-interactive
calculation does not have to be responsive to sudden new input and
also does not need to finish as quickly as possible)

renice <niceness> <pid> can be used to make jobs “nicer” or
“greedier” (the latter usually requires admin rights)

Levels of niceness run from -20 to +19, 0 is the default level

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 35 / 38

Scripting, text editing, etc.

Some handy tools

emacs, vim, gedit text editor
more, less pages through a file

cat <file> [<file2> ...] concatenates files and writes them to
STDOUT

head, tail show top/bottom of a file (tail -f keeps updating
bottom, handy e.g. for log files of active program)

grep <pattern> [<files>] parses STDIN or files for pattern (regex)
and returns matching lines

sed, awk very powerful CLI stream/text processors; can be used
to post-process output from a program or quickly
replace strings in a file (perfect for scripting)

screen allows you to detach a shell from the terminal/login
(e.g. to keep it running while you close the terminal or
ssh connection and to reattach it to a new session)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 36 / 38

Scripting, text editing, etc. (cont.)

You can combine multiple tools to build more powerful ones

You can either do this on the command line directly using piping (e.g.
ls *.png | wc -w) and/or process controls (e.g. ./program1;

./program2 && echo ‘‘success’’)

or you can put all these command sequences into a file (script) to
reuse them (or even combine them again)

a script file usually starts with a line like ”#!/usr/bin/env bash”
where you define the interpreter of the script (you can replace ”bash”
with e.g. python, awk, etc. if your script should use these programs
instead)

do not forget to make your script executable (see file permissions)
before trying to run it

for more information on (shell) scripting, please be referred to the
plentiful resources online

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 37 / 38

Scripting, text editing, etc. (cont.)

You can combine multiple tools to build more powerful ones

You can either do this on the command line directly using piping (e.g.
ls *.png | wc -w) and/or process controls (e.g. ./program1;

./program2 && echo ‘‘success’’)

or you can put all these command sequences into a file (script) to
reuse them (or even combine them again)

a script file usually starts with a line like ”#!/usr/bin/env bash”
where you define the interpreter of the script (you can replace ”bash”
with e.g. python, awk, etc. if your script should use these programs
instead)

do not forget to make your script executable (see file permissions)
before trying to run it

for more information on (shell) scripting, please be referred to the
plentiful resources online

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 37 / 38

Scripting, text editing, etc. (cont.)

You can combine multiple tools to build more powerful ones

You can either do this on the command line directly using piping (e.g.
ls *.png | wc -w) and/or process controls (e.g. ./program1;

./program2 && echo ‘‘success’’)

or you can put all these command sequences into a file (script) to
reuse them (or even combine them again)

a script file usually starts with a line like ”#!/usr/bin/env bash”
where you define the interpreter of the script (you can replace ”bash”
with e.g. python, awk, etc. if your script should use these programs
instead)

do not forget to make your script executable (see file permissions)
before trying to run it

for more information on (shell) scripting, please be referred to the
plentiful resources online

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 37 / 38

Scripting, text editing, etc. (cont.)

You can combine multiple tools to build more powerful ones

You can either do this on the command line directly using piping (e.g.
ls *.png | wc -w) and/or process controls (e.g. ./program1;

./program2 && echo ‘‘success’’)

or you can put all these command sequences into a file (script) to
reuse them (or even combine them again)

a script file usually starts with a line like ”#!/usr/bin/env bash”
where you define the interpreter of the script (you can replace ”bash”
with e.g. python, awk, etc. if your script should use these programs
instead)

do not forget to make your script executable (see file permissions)
before trying to run it

for more information on (shell) scripting, please be referred to the
plentiful resources online

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 37 / 38

Scripting, text editing, etc. (cont.)

You can combine multiple tools to build more powerful ones

You can either do this on the command line directly using piping (e.g.
ls *.png | wc -w) and/or process controls (e.g. ./program1;

./program2 && echo ‘‘success’’)

or you can put all these command sequences into a file (script) to
reuse them (or even combine them again)

a script file usually starts with a line like ”#!/usr/bin/env bash”
where you define the interpreter of the script (you can replace ”bash”
with e.g. python, awk, etc. if your script should use these programs
instead)

do not forget to make your script executable (see file permissions)
before trying to run it

for more information on (shell) scripting, please be referred to the
plentiful resources online

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 37 / 38

Scripting, text editing, etc. (cont.)

You can combine multiple tools to build more powerful ones

You can either do this on the command line directly using piping (e.g.
ls *.png | wc -w) and/or process controls (e.g. ./program1;

./program2 && echo ‘‘success’’)

or you can put all these command sequences into a file (script) to
reuse them (or even combine them again)

a script file usually starts with a line like ”#!/usr/bin/env bash”
where you define the interpreter of the script (you can replace ”bash”
with e.g. python, awk, etc. if your script should use these programs
instead)

do not forget to make your script executable (see file permissions)
before trying to run it

for more information on (shell) scripting, please be referred to the
plentiful resources online

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 37 / 38

Help/Manpages

most programs/commands on Linux come with their own man(ual)
pages. You can access them using man <command>.

If you are not sure which command to use, you can use apropos

<search term> to find a command and its manpages.

Google!/Bing!/DuckDuckGo! - Loads of information out there (and if
not there are forums like stackoverflow with helpful people)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 38 / 38

Help/Manpages

most programs/commands on Linux come with their own man(ual)
pages. You can access them using man <command>.

If you are not sure which command to use, you can use apropos

<search term> to find a command and its manpages.

Google!/Bing!/DuckDuckGo! - Loads of information out there (and if
not there are forums like stackoverflow with helpful people)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 38 / 38

Help/Manpages

most programs/commands on Linux come with their own man(ual)
pages. You can access them using man <command>.

If you are not sure which command to use, you can use apropos

<search term> to find a command and its manpages.

Google!/Bing!/DuckDuckGo! - Loads of information out there (and if
not there are forums like stackoverflow with helpful people)

JAS (ICG, Portsmouth) Unix/Linux Induction October 9, 2019 38 / 38

