
An Introduction into Parallelization
Multithreading and Multiprocessing for Beginners

Jascha Schewtschenko

Institute of Cosmology and Gravitation, University of Portsmouth

May 9, 2018

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 1 / 31



Outline
1 Concepts and Terminology

Amdahl’s Law
Granularity
Scalability
Complexity

2 Parallel Programming Models
Recap: Computer Architectures
Single-Instruction Multiple-Data (SIMD)
Shared memory without threads
Shared memory with Multithreading
Distributed Parallelism with Message Passing
Hybrid Models

3 Designing Parallel Programs
Understand your problem and tools
Partitioning - Domain vs functional decomposition
Data Dependence / Race conditions
Synchronization
Communication
Load balancing
I/O
Performance Analysis & Tuning

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 2 / 31



Concepts and Terminology

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 3 / 31



Concepts and Terminology

CPU/Processor/Core while technically nowadays each CPU/processor
hosts more than one core, we use this terms interchangeably

Node A ’standalone’ unit consisting of its own CPUs, memory (&
storage).

Process/Task logically discrete section of computational work - typically a
program or program-like set of instructions that is executed
by a processor

Thread part of the computational work of a process that is executed
in parallel on an additional processor

Observed speed-up ratio between wall-clock time of serial and parallelized
code

Parallel overhead Additional amount of time/resources required to run
parallelized code (e.g. start-up time and memory usage of
framework, data comm., synchronization)

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 4 / 31



Concepts and Terminology (cont.)

Throughput amount of (sub)tasks/data processed per time unit

Latency delay between invoking the operation and getting the
response (e.g. finishing a task)

Massively Parallel Refers to the hardware that comprises a given parallel
system - having many processing elements (the meaning of
”many” keeps increasing)

Embarrassingly Parallel Solving many similar, but independent tasks
simultaneously; little to no need for coordination between the
tasks

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 5 / 31



Concepts and Terminology - Amdahl’s Law

theoretical speedup in latency
Slatency of execution of task with
fixed workload:

Amdahl’s law

Slatency =
1

(1− p) + p
s

p is parallelizable fraction of code
s its speed-up

From this follows

lim
S→∞

Slatency =
1

1− p

i.e. never speeds up more than the
inverse serial fraction of code

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 6 / 31



Concepts and Terminology - Amdahl’s Law

theoretical speedup in latency
Slatency of execution of task with
fixed workload:

Amdahl’s law

Slatency =
1

(1− p) + p
s

p is parallelizable fraction of code
s its speed-up

From this follows

lim
S→∞

Slatency =
1

1− p

i.e. never speeds up more than the
inverse serial fraction of code

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 6 / 31



Concepts and Terminology - Granularity

Computation / Communication
Ratio

fine-grained frequent
communication;
facilitates e.g. load
balancing, comes with
overhead costs

coarse-grained less frequent comm.;
lower communication
costs, but potentially
poorer load balancing

best choice dependents on
circumstances

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 7 / 31



Concepts and Terminology - Granularity

Computation / Communication
Ratio

fine-grained frequent
communication;
facilitates e.g. load
balancing, comes with
overhead costs

coarse-grained less frequent comm.;
lower communication
costs, but potentially
poorer load balancing

best choice dependents on
circumstances

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 7 / 31



Concepts and Terminology - Granularity

Computation / Communication
Ratio

fine-grained frequent
communication;
facilitates e.g. load
balancing, comes with
overhead costs

coarse-grained less frequent comm.;
lower communication
costs, but potentially
poorer load balancing

best choice dependents on
circumstances

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 7 / 31



Concepts and Terminology - Granularity

Computation / Communication
Ratio

fine-grained frequent
communication;
facilitates e.g. load
balancing, comes with
overhead costs

coarse-grained less frequent comm.;
lower communication
costs, but potentially
poorer load balancing

best choice dependents on
circumstances

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 7 / 31



Concepts and Terminology - Scalability
Ability to demonstrate a proportionate
increase in parallel speedup with the
addition of more resources:

Weak scaling for running larger problem
while fixing the problem
size per processor

Strong scaling for running the same
problem size in less time

Factors affecting scalability:

I/O bandwidth (for RAM, storage
and communication)

imperfect/impossible load balancing

overhead on comm. (e.g. exchange
of padding around domain)

limitations of parallel support
libraries / parallel overhead

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 8 / 31



Concepts and Terminology - Scalability
Ability to demonstrate a proportionate
increase in parallel speedup with the
addition of more resources:

Weak scaling for running larger problem
while fixing the problem
size per processor

Strong scaling for running the same
problem size in less time

Factors affecting scalability:

I/O bandwidth (for RAM, storage
and communication)

imperfect/impossible load balancing

overhead on comm. (e.g. exchange
of padding around domain)

limitations of parallel support
libraries / parallel overhead

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 8 / 31



Concepts and Terminology - Scalability
Ability to demonstrate a proportionate
increase in parallel speedup with the
addition of more resources:

Weak scaling for running larger problem
while fixing the problem
size per processor

Strong scaling for running the same
problem size in less time

Factors affecting scalability:

I/O bandwidth (for RAM, storage
and communication)

imperfect/impossible load balancing

overhead on comm. (e.g. exchange
of padding around domain)

limitations of parallel support
libraries / parallel overhead

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 8 / 31



Concepts and Terminology - Scalability
Ability to demonstrate a proportionate
increase in parallel speedup with the
addition of more resources:

Weak scaling for running larger problem
while fixing the problem
size per processor

Strong scaling for running the same
problem size in less time

Factors affecting scalability:

I/O bandwidth (for RAM, storage
and communication)

imperfect/impossible load balancing

overhead on comm. (e.g. exchange
of padding around domain)

limitations of parallel support
libraries / parallel overhead
JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 8 / 31



Concepts and Terminology - Cost of Complexity

Anything short of a perfect scalability costs more resources in total (i.e.
wall time may be lower but total computation time and use of memory
increases). Additionally, the increased complexity comes with increased
development costs for:

Design

Coding

Debugging

Tuning

Maintenance

You have to find a trade-off between development time and runtime.
Make sure the development of a speed-up does not cost you more
time/resources than it saves you in the end!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 9 / 31



Concepts and Terminology - Cost of Complexity

Anything short of a perfect scalability costs more resources in total (i.e.
wall time may be lower but total computation time and use of memory
increases). Additionally, the increased complexity comes with increased
development costs for:

Design

Coding

Debugging

Tuning

Maintenance

You have to find a trade-off between development time and runtime.
Make sure the development of a speed-up does not cost you more
time/resources than it saves you in the end!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 9 / 31



Concepts and Terminology - Cost of Complexity

Anything short of a perfect scalability costs more resources in total (i.e.
wall time may be lower but total computation time and use of memory
increases). Additionally, the increased complexity comes with increased
development costs for:

Design

Coding

Debugging

Tuning

Maintenance

You have to find a trade-off between development time and runtime.
Make sure the development of a speed-up does not cost you more
time/resources than it saves you in the end!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 9 / 31



Concepts and Terminology - Cost of Complexity

Anything short of a perfect scalability costs more resources in total (i.e.
wall time may be lower but total computation time and use of memory
increases). Additionally, the increased complexity comes with increased
development costs for:

Design

Coding

Debugging

Tuning

Maintenance

You have to find a trade-off between development time and runtime.
Make sure the development of a speed-up does not cost you more
time/resources than it saves you in the end!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 9 / 31



Concepts and Terminology - Cost of Complexity

Anything short of a perfect scalability costs more resources in total (i.e.
wall time may be lower but total computation time and use of memory
increases). Additionally, the increased complexity comes with increased
development costs for:

Design

Coding

Debugging

Tuning

Maintenance

You have to find a trade-off between development time and runtime.
Make sure the development of a speed-up does not cost you more
time/resources than it saves you in the end!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 9 / 31



Concepts and Terminology - Cost of Complexity

Anything short of a perfect scalability costs more resources in total (i.e.
wall time may be lower but total computation time and use of memory
increases). Additionally, the increased complexity comes with increased
development costs for:

Design

Coding

Debugging

Tuning

Maintenance

You have to find a trade-off between development time and runtime.
Make sure the development of a speed-up does not cost you more
time/resources than it saves you in the end!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 9 / 31



Concepts and Terminology - Cost of Complexity

Anything short of a perfect scalability costs more resources in total (i.e.
wall time may be lower but total computation time and use of memory
increases). Additionally, the increased complexity comes with increased
development costs for:

Design

Coding

Debugging

Tuning

Maintenance

You have to find a trade-off between development time and runtime.
Make sure the development of a speed-up does not cost you more
time/resources than it saves you in the end!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 9 / 31



Parallel Programming Models

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 10 / 31



Recap: Computer Architectures - Flynn’s taxonomy

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 11 / 31



Parallel Programming Models - Overview

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 12 / 31



Parallel Programming Models - SIMD / Vectorization

special case of automatic parallelization

special hardware allowing to run the same operation on multiple
operands (’vector’) at once

all modern CPUs support such operations (e.g. MMX/SSE/AVX)

used e.g. for loops

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 13 / 31



Parallel Programming Models - SIMD / Vectorization

special case of automatic parallelization

special hardware allowing to run the same operation on multiple
operands (’vector’) at once

all modern CPUs support such operations (e.g. MMX/SSE/AVX)

used e.g. for loops

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 13 / 31



Parallel Programming Models - SIMD / Vectorization

special case of automatic parallelization

special hardware allowing to run the same operation on multiple
operands (’vector’) at once

all modern CPUs support such operations (e.g. MMX/SSE/AVX)

used e.g. for loops

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 13 / 31



Parallel Programming Models - SIMD / Vectorization

special case of automatic parallelization

special hardware allowing to run the same operation on multiple
operands (’vector’) at once

all modern CPUs support such operations (e.g. MMX/SSE/AVX)

used e.g. for loops

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 13 / 31



Parallel Programming Models - SIMD / Vectorization

special case of automatic parallelization

special hardware allowing to run the same operation on multiple
operands (’vector’) at once

all modern CPUs support such operations (e.g. MMX/SSE/AVX)

used e.g. for loops

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 13 / 31



Parallel Programming Models - Shared memory without
Threads

simplest parallel programming
model

processes share common address
space

access to shared memory has to be
controlled to prevent race
conditions and deadlocks (see later)

while not very common in use, e.g.
POSIX standards provide API,
UNIX provides shared memory
segments

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 14 / 31



Parallel Programming Models - Shared memory without
Threads

simplest parallel programming
model

processes share common address
space

access to shared memory has to be
controlled to prevent race
conditions and deadlocks (see later)

while not very common in use, e.g.
POSIX standards provide API,
UNIX provides shared memory
segments

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 14 / 31



Parallel Programming Models - Shared memory without
Threads

simplest parallel programming
model

processes share common address
space

access to shared memory has to be
controlled to prevent race
conditions and deadlocks (see later)

while not very common in use, e.g.
POSIX standards provide API,
UNIX provides shared memory
segments

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 14 / 31



Parallel Programming Models - Shared memory without
Threads

simplest parallel programming
model

processes share common address
space

access to shared memory has to be
controlled to prevent race
conditions and deadlocks (see later)

while not very common in use, e.g.
POSIX standards provide API,
UNIX provides shared memory
segments

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 14 / 31



Parallel Programming Models - Shared memory with
Multithreading

In Multithreading, a single ”heavy
weight” process can have multiple
”light weight”, concurrent execution
paths (threads).

A thread’s work may best be
described as a subroutine within the
main program.

Any thread can execute any
subroutine at the same time as
other threads.

Each thread has local data, but
also, shares the entire resources of
its parent process i.e. saves
replicating a program’s resources for
each thread (”light weight”).

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 15 / 31



Parallel Programming Models - Shared memory with
Multithreading

In Multithreading, a single ”heavy
weight” process can have multiple
”light weight”, concurrent execution
paths (threads).

A thread’s work may best be
described as a subroutine within the
main program.

Any thread can execute any
subroutine at the same time as
other threads.

Each thread has local data, but
also, shares the entire resources of
its parent process i.e. saves
replicating a program’s resources for
each thread (”light weight”).

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 15 / 31



Parallel Programming Models - Shared memory with
Multithreading

In Multithreading, a single ”heavy
weight” process can have multiple
”light weight”, concurrent execution
paths (threads).

A thread’s work may best be
described as a subroutine within the
main program.

Any thread can execute any
subroutine at the same time as
other threads.

Each thread has local data, but
also, shares the entire resources of
its parent process i.e. saves
replicating a program’s resources for
each thread (”light weight”).

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 15 / 31



Parallel Programming Models - Shared memory with
Multithreading

In Multithreading, a single ”heavy
weight” process can have multiple
”light weight”, concurrent execution
paths (threads).

A thread’s work may best be
described as a subroutine within the
main program.

Any thread can execute any
subroutine at the same time as
other threads.

Each thread has local data, but
also, shares the entire resources of
its parent process i.e. saves
replicating a program’s resources for
each thread (”light weight”).
JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 15 / 31



Parallel Programming Models - Shared memory with
Multithreading (cont.)

Each thread also benefits from
global memory view; it shares
memory space of the host process
(requires access control!)

Threads communicate with each
other through global memory.

Threads can be spawned and
terminated at any time in the host
process, but the host process
remains present to provide the
necessary shared resources until the
application has completed.

We will focus on two standards:
OpenMP & POSIX Threads

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 16 / 31



Parallel Programming Models - Shared memory with
Multithreading (cont.)

Each thread also benefits from
global memory view; it shares
memory space of the host process
(requires access control!)

Threads communicate with each
other through global memory.

Threads can be spawned and
terminated at any time in the host
process, but the host process
remains present to provide the
necessary shared resources until the
application has completed.

We will focus on two standards:
OpenMP & POSIX Threads

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 16 / 31



Parallel Programming Models - Shared memory with
Multithreading (cont.)

Each thread also benefits from
global memory view; it shares
memory space of the host process
(requires access control!)

Threads communicate with each
other through global memory.

Threads can be spawned and
terminated at any time in the host
process, but the host process
remains present to provide the
necessary shared resources until the
application has completed.

We will focus on two standards:
OpenMP & POSIX Threads

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 16 / 31



Parallel Programming Models - Shared memory with
Multithreading (cont.)

Each thread also benefits from
global memory view; it shares
memory space of the host process
(requires access control!)

Threads communicate with each
other through global memory.

Threads can be spawned and
terminated at any time in the host
process, but the host process
remains present to provide the
necessary shared resources until the
application has completed.

We will focus on two standards:
OpenMP & POSIX Threads

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 16 / 31



Parallel Programming Models - Shared memory with
Multithreading (cont.)

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 17 / 31



Distributed Parallelism with Message Passing

set of processes with own local
memory - reside on the same node
and/or across multiple nodes.

Data between processes is
exchanged through sending and
receiving messages (“Message
Passing”)

The message passing requires
cooperation between processes
(each send must have a matching
receive operation)

The message system can also be
used to synchronize processes

MPI is the ”de facto” standard

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 18 / 31



Distributed Parallelism with Message Passing

set of processes with own local
memory - reside on the same node
and/or across multiple nodes.

Data between processes is
exchanged through sending and
receiving messages (“Message
Passing”)

The message passing requires
cooperation between processes
(each send must have a matching
receive operation)

The message system can also be
used to synchronize processes

MPI is the ”de facto” standard

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 18 / 31



Distributed Parallelism with Message Passing

set of processes with own local
memory - reside on the same node
and/or across multiple nodes.

Data between processes is
exchanged through sending and
receiving messages (“Message
Passing”)

The message passing requires
cooperation between processes
(each send must have a matching
receive operation)

The message system can also be
used to synchronize processes

MPI is the ”de facto” standard

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 18 / 31



Distributed Parallelism with Message Passing

set of processes with own local
memory - reside on the same node
and/or across multiple nodes.

Data between processes is
exchanged through sending and
receiving messages (“Message
Passing”)

The message passing requires
cooperation between processes
(each send must have a matching
receive operation)

The message system can also be
used to synchronize processes

MPI is the ”de facto” standard

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 18 / 31



Distributed Parallelism with Message Passing

set of processes with own local
memory - reside on the same node
and/or across multiple nodes.

Data between processes is
exchanged through sending and
receiving messages (“Message
Passing”)

The message passing requires
cooperation between processes
(each send must have a matching
receive operation)

The message system can also be
used to synchronize processes

MPI is the ”de facto” standard

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 18 / 31



Hybrid Models

Allows to make best use of locally
shared memory or hardware, while
still allowing for a good scalability
across multiple nodes

Comes with a significant increase in
complexity/costs

certain incompatibilities between
libraries may exist (e.g. lack of
thread-safety of MPI library)

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 19 / 31



Designing Parallel Programs

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 20 / 31



Understand your problem (!)
some problems can be easily parallelized e.g. calculation of π by
Monte-Carlo sampling

others allow for little-to-no parallelism e.g. recursive calculation of
Fibonacci series

F (n) = F (n − 1) + F (n − 2), F (0) = 0, F (1) = 1

Identify inhibitors to parallelism: data-dependencies, I/O bottlenecks
Consider replacing your algorithms with equivalent ones better suited
for parallelism

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 21 / 31



Understand your problem (!)
some problems can be easily parallelized e.g. calculation of π by
Monte-Carlo sampling

others allow for little-to-no parallelism e.g. recursive calculation of
Fibonacci series

F (n) = F (n − 1) + F (n − 2), F (0) = 0, F (1) = 1

Identify inhibitors to parallelism: data-dependencies, I/O bottlenecks
Consider replacing your algorithms with equivalent ones better suited
for parallelism

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 21 / 31



Understand your problem (!)
some problems can be easily parallelized e.g. calculation of π by
Monte-Carlo sampling

others allow for little-to-no parallelism e.g. recursive calculation of
Fibonacci series

F (n) = F (n − 1) + F (n − 2), F (0) = 0, F (1) = 1

Identify inhibitors to parallelism: data-dependencies, I/O bottlenecks

Consider replacing your algorithms with equivalent ones better suited
for parallelism

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 21 / 31



Understand your problem (!)
some problems can be easily parallelized e.g. calculation of π by
Monte-Carlo sampling

others allow for little-to-no parallelism e.g. recursive calculation of
Fibonacci series

F (n) = F (n − 1) + F (n − 2), F (0) = 0, F (1) = 1

Identify inhibitors to parallelism: data-dependencies, I/O bottlenecks
Consider replacing your algorithms with equivalent ones better suited
for parallelism

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 21 / 31



Understand your tools/program (!)

pick optimal parallel programming model for your infrastructure

make use of hardware optimization (e.g. vectorization, optimized
libraries like MKL)

identify hotspots in your program, i.e. routines where program spends
lots of time in and check for improvement in parallelism (→Amdahl’s
Law/Scaling)

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 22 / 31



Understand your tools/program (!)

pick optimal parallel programming model for your infrastructure

make use of hardware optimization (e.g. vectorization, optimized
libraries like MKL)

identify hotspots in your program, i.e. routines where program spends
lots of time in and check for improvement in parallelism (→Amdahl’s
Law/Scaling)

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 22 / 31



Understand your tools/program (!)

pick optimal parallel programming model for your infrastructure

make use of hardware optimization (e.g. vectorization, optimized
libraries like MKL)

identify hotspots in your program, i.e. routines where program spends
lots of time in and check for improvement in parallelism (→Amdahl’s
Law/Scaling)

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 22 / 31



Partitioning - Domain decomposition

In this type of partitioning, the data associated with a problem is
decomposed. Each parallel task then works on a portion of the data.

There are different ways to partition data:

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 23 / 31



Partitioning - Domain decomposition

In this type of partitioning, the data associated with a problem is
decomposed. Each parallel task then works on a portion of the data.

There are different ways to partition data:

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 23 / 31



Partitioning - Domain decomposition

In this type of partitioning, the data associated with a problem is
decomposed. Each parallel task then works on a portion of the data.

There are different ways to partition data:

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 23 / 31



Partitioning - Domain decomposition

In this type of partitioning, the data associated with a problem is
decomposed. Each parallel task then works on a portion of the data.

There are different ways to partition data:

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 23 / 31



Partitioning - functional decomposition

In this approach, the focus is on the computation that is to be
performed rather than on the data manipulated by the computation.

Tasks/threads then specialize in doing specific parts of the overall
work:

implemented e.g. in master/slave paradigm (see exercises)

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 24 / 31



Partitioning - functional decomposition

In this approach, the focus is on the computation that is to be
performed rather than on the data manipulated by the computation.

Tasks/threads then specialize in doing specific parts of the overall
work:

implemented e.g. in master/slave paradigm (see exercises)

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 24 / 31



Partitioning - functional decomposition

In this approach, the focus is on the computation that is to be
performed rather than on the data manipulated by the computation.

Tasks/threads then specialize in doing specific parts of the overall
work:

implemented e.g. in master/slave paradigm (see exercises)

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 24 / 31



Data Dependence

data dependence results from multiple use of the same memory
location by different tasks.

Dependencies are important to parallel programming because they are
one of the primary inhibitors to parallelism (cf. Fibonacci series).

This can also cause a so called race condition:

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 25 / 31



Data Dependence

data dependence results from multiple use of the same memory
location by different tasks.

Dependencies are important to parallel programming because they are
one of the primary inhibitors to parallelism (cf. Fibonacci series).

This can also cause a so called race condition:

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 25 / 31



Data Dependence

data dependence results from multiple use of the same memory
location by different tasks.

Dependencies are important to parallel programming because they are
one of the primary inhibitors to parallelism (cf. Fibonacci series).

This can also cause a so called race condition:

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 25 / 31



Synchronization

synchronization is used to control the flow of processes/threads to
deal with “mutually exclusive” resources (using locks/semaphores) to
resolve e.g. race conditions

... or to synchronize the calculations of processes (using barriers) for
communication to exchange results or to redistribute the workload

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 26 / 31



Synchronization

synchronization is used to control the flow of processes/threads to
deal with “mutually exclusive” resources (using locks/semaphores) to
resolve e.g. race conditions

... or to synchronize the calculations of processes (using barriers) for
communication to exchange results or to redistribute the workload

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 26 / 31



Communication

Depending on the type of problem and used decomposition approach,
more or less communication may be required

e.g. for embarrassingly parallel problem tasks run (mostly)
independent of each other while e.g. in cosmological simulations
long-range forces have to communicated between tasks working on
neighbouring domains and particles may have to be exchanged if
domain borders or particles move.

Factors to consider:
I Communication overhead
I Latency vs. Bandwidth
I Synchronous vs. asynchronous communications
I Point-to-Point vs. collective communications

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 27 / 31



Communication

Depending on the type of problem and used decomposition approach,
more or less communication may be required

e.g. for embarrassingly parallel problem tasks run (mostly)
independent of each other while e.g. in cosmological simulations
long-range forces have to communicated between tasks working on
neighbouring domains and particles may have to be exchanged if
domain borders or particles move.

Factors to consider:
I Communication overhead
I Latency vs. Bandwidth
I Synchronous vs. asynchronous communications
I Point-to-Point vs. collective communications

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 27 / 31



Communication

Depending on the type of problem and used decomposition approach,
more or less communication may be required

e.g. for embarrassingly parallel problem tasks run (mostly)
independent of each other while e.g. in cosmological simulations
long-range forces have to communicated between tasks working on
neighbouring domains and particles may have to be exchanged if
domain borders or particles move.

Factors to consider:

I Communication overhead
I Latency vs. Bandwidth
I Synchronous vs. asynchronous communications
I Point-to-Point vs. collective communications

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 27 / 31



Communication

Depending on the type of problem and used decomposition approach,
more or less communication may be required

e.g. for embarrassingly parallel problem tasks run (mostly)
independent of each other while e.g. in cosmological simulations
long-range forces have to communicated between tasks working on
neighbouring domains and particles may have to be exchanged if
domain borders or particles move.

Factors to consider:
I Communication overhead

I Latency vs. Bandwidth
I Synchronous vs. asynchronous communications
I Point-to-Point vs. collective communications

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 27 / 31



Communication

Depending on the type of problem and used decomposition approach,
more or less communication may be required

e.g. for embarrassingly parallel problem tasks run (mostly)
independent of each other while e.g. in cosmological simulations
long-range forces have to communicated between tasks working on
neighbouring domains and particles may have to be exchanged if
domain borders or particles move.

Factors to consider:
I Communication overhead
I Latency vs. Bandwidth

I Synchronous vs. asynchronous communications
I Point-to-Point vs. collective communications

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 27 / 31



Communication

Depending on the type of problem and used decomposition approach,
more or less communication may be required

e.g. for embarrassingly parallel problem tasks run (mostly)
independent of each other while e.g. in cosmological simulations
long-range forces have to communicated between tasks working on
neighbouring domains and particles may have to be exchanged if
domain borders or particles move.

Factors to consider:
I Communication overhead
I Latency vs. Bandwidth
I Synchronous vs. asynchronous communications

I Point-to-Point vs. collective communications

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 27 / 31



Communication

Depending on the type of problem and used decomposition approach,
more or less communication may be required

e.g. for embarrassingly parallel problem tasks run (mostly)
independent of each other while e.g. in cosmological simulations
long-range forces have to communicated between tasks working on
neighbouring domains and particles may have to be exchanged if
domain borders or particles move.

Factors to consider:
I Communication overhead
I Latency vs. Bandwidth
I Synchronous vs. asynchronous communications
I Point-to-Point vs. collective communications

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 27 / 31



Load balancing

Load balancing needed to ensure that processors are optimally i.e.
minimizing idle times at synchronization points

requires well-balanced workload distribution between processors

difficult in heterogeneous, dynamic problem sets with incomplete
information about the actual workload

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 28 / 31



Load balancing

Load balancing needed to ensure that processors are optimally i.e.
minimizing idle times at synchronization points

requires well-balanced workload distribution between processors

difficult in heterogeneous, dynamic problem sets with incomplete
information about the actual workload

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 28 / 31



Load balancing

Load balancing needed to ensure that processors are optimally i.e.
minimizing idle times at synchronization points

requires well-balanced workload distribution between processors

difficult in heterogeneous, dynamic problem sets with incomplete
information about the actual workload

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 28 / 31



Load balancing (cont.)

requires repeated repartitioning the problem based on estimate of
workload

alternatively, use asynchronous approach with scheduler-task pool
with smaller workload packages

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 29 / 31



Load balancing (cont.)

requires repeated repartitioning the problem based on estimate of
workload

alternatively, use asynchronous approach with scheduler-task pool
with smaller workload packages

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 29 / 31



I/O

data transfer to storage medias, network file servers

I/O operations are generally obstacles for parallelism as they require
orders of magnitude more time than memory operations.

Like for shared memory, may require synchronization (e.g. to avoid
two processes (over)writing the same file simultaneously in a shared
file system

Parallel filesystems available (e.g. GPFS, Lustre, HDFS)

more on this tomorrow!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 30 / 31



I/O

data transfer to storage medias, network file servers

I/O operations are generally obstacles for parallelism as they require
orders of magnitude more time than memory operations.

Like for shared memory, may require synchronization (e.g. to avoid
two processes (over)writing the same file simultaneously in a shared
file system

Parallel filesystems available (e.g. GPFS, Lustre, HDFS)

more on this tomorrow!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 30 / 31



I/O

data transfer to storage medias, network file servers

I/O operations are generally obstacles for parallelism as they require
orders of magnitude more time than memory operations.

Like for shared memory, may require synchronization (e.g. to avoid
two processes (over)writing the same file simultaneously in a shared
file system

Parallel filesystems available (e.g. GPFS, Lustre, HDFS)

more on this tomorrow!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 30 / 31



I/O

data transfer to storage medias, network file servers

I/O operations are generally obstacles for parallelism as they require
orders of magnitude more time than memory operations.

Like for shared memory, may require synchronization (e.g. to avoid
two processes (over)writing the same file simultaneously in a shared
file system

Parallel filesystems available (e.g. GPFS, Lustre, HDFS)

more on this tomorrow!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 30 / 31



I/O

data transfer to storage medias, network file servers

I/O operations are generally obstacles for parallelism as they require
orders of magnitude more time than memory operations.

Like for shared memory, may require synchronization (e.g. to avoid
two processes (over)writing the same file simultaneously in a shared
file system

Parallel filesystems available (e.g. GPFS, Lustre, HDFS)

more on this tomorrow!

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 30 / 31



Performance Analysis & Tuning

Analyzing and tuning parallel program performance can be much
more challenging than for serial programs as interactions between
tasks result in very complex dynamics

Unfortunately, covering this topic in any detail would go beyond the
scope of this introduction to parallel program.

There are a number of excellent tools for this task: e.g. Intel VTune
Amplifier and Intel Trace Analyzer

JAS (ICG, Portsmouth) An Introduction into Parallelization May 9, 2018 31 / 31


	Concepts and Terminology
	Amdahl's Law
	Granularity
	Scalability
	Complexity

	Parallel Programming Models
	Recap: Computer Architectures
	Single-Instruction Multiple-Data (SIMD)
	Shared memory without threads
	Shared memory with Multithreading
	Distributed Parallelism with Message Passing
	Hybrid Models

	Designing Parallel Programs
	Understand your problem and tools
	Partitioning - Domain vs functional decomposition
	Data Dependence / Race conditions
	Synchronization
	Communication
	Load balancing
	I/O
	Performance Analysis & Tuning


