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OpenMP
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OpenMP - Goals

Standardization provide standard for vatiety of platforms/shared-mem
architectures

Lean and Mean simple and limited set of directives, very few uses of
directives needed

Ease of Use can incrementally parallelize program (source stays the same
except for added directives), supports both coarse-grain and
fine-grain parallelism

Portability public API, implementations for C, C++, Fortran
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OpenMP - Structure & Implementations

Supported/shipped with various compilers for various platforms (e.g.
Intel and GNU compilers for Linux), i.e. to compile simply add option:

e.g. gcc -fopenmp

uses a form-join model

comprised of 3 API components:
I Compiler Directives
I Runtime Library routines
I Environment Variables
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OpenMP - Compiler Directives

We will focus here on C/C++ syntax, FORTRAN syntax slightly different:

#pragma omp <directive name> [<clauses>] (C/C++)
!$OMP [END] <directive name> [<clauses>] (Fortran)

Used for:

Defining parallel regions / spawning threads

Distributing loop iterations or sections of code between threads

Serializing sections of code (e.g. for access to I/O or shared variables)

Synchronizing threads

You can find a reference sheet for the C/C++ API for OpenMP 4.0 in the
source code archive for this workshop.
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OpenMP - Runtime Library Routines

These routines are provided by the openmp library are used to
configuring and monitoring the multithreading during execution: e.g.

omp get num threads returns number of threads in current team
omp in parallel check if in parallel regions
omp set schedule modify scheduler policy

There are further routines for locks for synchronization/access control
(see later)

as well as timing routines for recording elapsed time for each thread.
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OpenMP - Environment variables

Like for most programs in the UNIX world, environmental variables
are used to store configurations needed for running the program. In
OpenMP, they are used for setting e.g. the number of threads per
team (OMP NUM THREADS), maximum number of threads
(OMP THREAD LIMIT) or the scheduler policy (OMP SCHEDULE).

While most of these settings can also be done using clauses in the
compiler directives of runtime library routines, environmental variables
provide a user an easy way to change these crucial settings without
the need of an additional config file (parsed by your program) or even
rewritting/recompiling the openmp-enhanced program.
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OpenMP - Worksharing
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OpenMP - Worksharing (examples)
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OpenMP - advanced Worksharing

defines explicit tasks similar to sections that
are generated (usually by a single task) and
then deferred to any thread in the team via
a queue/scheduler

tasks are not necessarily tied to a single
thread, can be e.g. postponed or migrated
to other threads

allows for defining dependencies among
tasks (e.g. task X has to finish before any
thread can work on task Y)
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OpenMP - advanced Worksharing (example)
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OpenMP - Synchronization / Flow control

In the ’Introduction to Parallelization’, we discussed the need of
controlling the execution of threads at certain points to e.g. synchronize
them to exchange intermediate results or to protect resources from getting
accessed simultaneously with non-deterministic outcome (’race condition’).
OpenMP provides two ways to do this:

Compiler Directives:
I (for general parallel regions) e.g.

cancel,single,master,critical,atomic, barrier
I (for loops) ordered
I (for tasks) taskwait, taskyield

Runtime Library Routines:
omp set lock,omp unset lock,omp test lock
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OpenMP - Synchronization / Flow control
(RESTRICTION)

BARRIER SINGLE MASTER

implicit BARRIER NO implicit BARRIER
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OpenMP - Synchronization / Flow control (MUTEX)
CRITICAL / ATOMIC

#1 executes #1 exited #3 exited
#3 entered #3 executes #2 executes

CRITICAL,ATOMIC exclusive for ALL threads, not just team

CRITICAL regions can be named, regions with same name treated as
same region
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OpenMP - Memory management (CLAUSES)

Certain clauses for compiler directives allow us to specify how data is
shared (e.g. shared, private, threadprivate) and how they are
initialized (e.g.firstprivate, copyin)

Others like copyprivate allow for broadcasting the content of
private variables from one thread to all others

Similarly, the reduction clause provides an elegant way to gather
private data from the threads when joining them
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OpenMP - Memory management (FLUSHING DATA)

even if shared, sometimes variable may not be updated in the
”global” view, e.g. if kept in a register or cache of a CPU instead of
the shared memory

while many directives (e.g. for, section, critical) implicitly flush
variable to synchronize them with other threads, sometimes explicit
flushing using the flush may be necessary.
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OpenMP - Memory management (STACK)

OpenMP standard does not specify a
default stack size for each thread. So
depends on the compiler e.g.

Compiler Approx Stack Limit

icc/ifort (Linux) 4 MB

gcc/gfort (Linux) 2 MB

if stack allocation exceeded, may result
in seg fault or (worse) data corruption.

Env. variable OMP STACKSIZE allows to
set stacksize prior to execution. So if
your program needs an significant
amount of data on the stack, make sure
to adapt the stacksize this way!
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POSIX Threads
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PThreads - History/Goals

standardized API for multithreading to allow for portable threaded
applications

first defined in IEEE POSIX standard 1003.1c in 1995, but undergoes
continuous evolution/revision

historically implementations focused on Unix as OS, but
implementations also exist now for others e.g. for Windows
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PThreads - Compiling & Running

Like for OpenMP, POSIX Threads are included in most recent
compiler suites by default

To enable these included libraries, use e.g.

icc -pthread for INTEL (Linux)
gcc -pthread for GNU (Linux)
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PThreads - API

The subroutines defined in the API can be classified into four major
groups:

Thread management For creating new threads, checking their
properties and joining/destroying them and the end of
their lifecycle (pthread ,pthread attr )

Mutexes For creating mutex locks to control excess to exclusive
resources (pthread mutex ,pthread mutexattr )

Condition variables routines for managing condition variable to allow
for easy communication between threads that share a
mutex (pthread cond ,pthread condattr )

Synchronization barriers, read/write locks
(pthread barrier ,pthread rwlock )
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PThreads - Thread management: Creation & Termination

POSIX threads (pthread t) are created explicitly using the
pthread create(thread,attr,start routine,arg) where

I attr is a thread attribute structure containing settings for
creating/running thread

I start routine is a procedure that works as a starting point for the
thread

I arg is a pointer to the argument for the starting routine (can be
pointing to a single data element, an array or a custom data structure)

They terminate when finishing their starting routine, calling
pthread exit(status) to return a status flag, by another thread by
calling pthread cancel(thread) with thread pointing to them or
the host process finishing first (without pthread exit() call)
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PThreads - Thread management: Example 1
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PThreads - Thread management: Joining & Detaching

“Joining” threads allows the master thread to synchronize with its
worker threads on completion of their task

threads can be declared “joinable” on creation

data (Thread Control Block) remains in memory after completion of a
thread until pthread join is called on this dead thread and the
clean-up is triggered

“detached” threads do not keep such (potentially unnecessary) data,
i.e. get cleaned up directly on completion
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PThreads - Mutexes

Mutexes work in similar way as the OpemMP locks: once claimed by
one thread, other threads encountering it will be hold until the mutex
released again.

JAS (ICG, Portsmouth) Implementation of Parallelization May 9, 2018 26 / 48



PThreads - Joining & Mutexes: Example
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PThreads - Condition variables

Conditions variables control the flow of threads like Mutexes

instead of claiming a lock, it allows threads to wait
(pthread cond wait()) until another thread send a signal
(pthread cond signal()) through the condition variable to
continue.
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PThreads - Synchronization: Barriers

POSIX Threads also feature a synchronization barrier similar to
OpenMP.

Since there are no ”team” structure like in OpenMP, on creation a
number of threads is defined, that has to reach the barrier before any
of them is allowed to pass.

JAS (ICG, Portsmouth) Implementation of Parallelization May 9, 2018 29 / 48



PThreads - Synchronization: Barriers

POSIX Threads also feature a synchronization barrier similar to
OpenMP.

Since there are no ”team” structure like in OpenMP, on creation a
number of threads is defined, that has to reach the barrier before any
of them is allowed to pass.

JAS (ICG, Portsmouth) Implementation of Parallelization May 9, 2018 29 / 48



PThreads - Synchronization: Barriers

POSIX Threads also feature a synchronization barrier similar to
OpenMP.

Since there are no ”team” structure like in OpenMP, on creation a
number of threads is defined, that has to reach the barrier before any
of them is allowed to pass.

JAS (ICG, Portsmouth) Implementation of Parallelization May 9, 2018 29 / 48



PThreads - Memory management

As for OpenMP, POSIX does not dictate the (default) stack size for a
thread and thus can vary greatly.

So better explicitly allocate enough stack to provide portability and
avoid segmentation faults or data corruption

use pthread attr setstacksize to set the desired stacksize in the
attribute object used for creating the thread.
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MPI
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MPI - History/Goals

Goals:

Standardization De-facto industry “standard” for message passing.
Portability Runs on a huge variety of platforms, allows for

parallelization on very heterogeneous clusters

First presented at supercomputing conference in 1993, initial releases
in 1994 (MPI-1), 1998 (MPI-2), 2012 (MPI-3)

Many popular implementations e.g. OpenMPI (free), Intel MPI,
MPICH
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MPI - Compiling & Running

For compiling MPI programs, each implementation comes with
specific “wrapper” scripts for the compilers, e.g.

GNU Intel

OpenMPI
C mpicc

C++ mpiCC/mpic++/mpicxx
Fortran mpifort

Intel MPI
C mpicc/mpigcc mpicc/mpiicc

C++ mpi{CC,c++,cxx}/mpigxx mpi{CC,c++,cxx}/mpiicpc
Fortran mpifort mpifort*/mpiifort

For running a MPI program, we use mpirun, which starts as many
copies of the program as requested on nodes provided by the batch
system, e.g.

mpirun -np 4 my program
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MPI - Init & Finalize

Before using any MPI routine (or better as early as possible), the MPI
framework must be initialized by calling MPI Init(&argc,&argv),
which also broadcast the command line arguments to all processes

At the end of your program, always call MPI Finalize() to properly
terminate/clean up the MPI execution environment
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MPI - Communicators

MPI uses communicators to define which processes may communicate
with each other - in many cases, the predefined MPI COMM WORLD,
which includes all MPI processes.

each process has a unique rank within the communicator. You can
get the rank for a process with the command
MPI Comm rank(comm,&rank) as well as the total size of the
communicator (MPI Comm size(comm,&size))
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MPI - Example 1
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MPI - Communication

In MPI there are routines for Point-to-Point communication (i.e. from
one process to exactly one other) as well as for collective
communication

a Point-to-Point communication always consists of a send and a
matching receive (or combined send/recv) routines

those routines can be blocking and non-blocking, non-synchronous
and synchronous
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MPI - Communication: Buffering
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MPI - Communication: Blocking vs Non-Blocking

Blocking A blocking send (MPI Send(...)) waits until message is
processed by local MPI (does not mean, that message has
been received by other processes!), for waiting for confirmed
processing by recipient, use synchronous blocking send
(MPI Ssend(...)); a blocking receive waits until data is
received and ready for use

Non-Blocking Non-blocking send/receive routines
(MPI Isend(...),MPI Irecv(...),MPI Issend(...))
work like their blocking counter-parts, but only request the
operation and do not wait for its completion. Instead they
return a request object that can be used to test/wait (e.g.
MPI Wait(...),MPI Probe(...)) until operation has been
processed/certain status is reached for one or more request
simultaneously.
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MPI - Communication: Syntax

MPI Isend(&buffer,count,datatype,dest,tag,comm,&request)

MPI Recv(&buffer,count,datatype,src,tag,comm,&status)

with

buffer Memory block to send/receive data from/to
count Number of data elements to be sent/ maximum number to

be received (see MPI Get count() for received amount)
datatype One of the predefined elementary MPI data types or derived

data types
dest/src Rank of the communication partner (within the used shared

communicator); wildcard MPI ANY SOURCE

tag arbitrary non-negative (short) integer; same for send &
receive (unless wildcard MPI ANY TAG used for recv)

comm communicator
request allocated request structure used to communicate progress of

comm. process for non-blocking routines
status allocated status structure containing source & tag for receive

routines
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MPI - Collective Communication

More efficient data exchange with multiple processes

always involves all processes in one communicator

can only used with predefined datatypes

can be blocking or non-blocking (since MPI-3)
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MPI - Collective Comm. [Broadcast/Scatter/Gather]
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MPI - Collective Communication [Allgather,Alltoall]
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MPI - Collective Communication [Reduce,Allreduce]
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MPI - Collective Communication [Reduce,Allreduce]
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MPI - Collective Communication: Example
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MPI - Multithreading

As shown in the ’Introduction’ talk, you can combine Multithreading
and Multiprocessing, BUT ...

you have to check whether your MPI implementations is thread-safe.
MPI libraries vary in their level of thread support:

MPI THREAD SINGLE no multithreading supported
MPI THREAD FUNNELED only main thread may make MPI calls
MPI THREAD SERIALIZED MPI calls are serialized i.e. cannot be

processed concurrently
MPI THREAD MULTIPLE thread-safe
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Debugging
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Debugging

As for analyzing and tuning parallel program performance, debugging
can be much more challenging for parallel programs than for serial
programs (in particular for MPI programs)

And again, unfortunately, covering this topic in any detail would go
beyond the scope of this introduction to parallel program.

While popular open source debuggers like gdb provide facilites for
debugging multi-threaded programs, MPI debugging relies on
commercial solutions like DDT or TotalView
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