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OpenMP - Goals

Standardization provide standard for vatiety of platforms/shared-mem
architectures

Lean and Mean simple and limited set of directives, very few uses of
directives needed

Ease of Use can incrementally parallelize program (source stays the same
except for added directives), supports both coarse-grain and
fine-grain parallelism

Portability public API, implementations for C, C++, Fortran
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OpenMP - Structure & Implementations

@ Supported/shipped with various compilers for various platforms (e.g.
Intel and GNU compilers for Linux), i.e. to compile simply add option:

e.g. gcc —fopenmp
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OpenMP - Structure & Implementations

@ Supported/shipped with various compilers for various platforms (e.g.
Intel and GNU compilers for Linux), i.e. to compile simply add option:

e.g. gcc —fopenmp

@ uses a form-join model

master thread - -
S - e .
e
threads K . threads ./ ——
i :
parallel region
parallel region parallel region with nested parallel region

@ comprised of 3 APl components:

» Compiler Directives
» Runtime Library routines
» Environment Variables
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OpenMP - Compiler Directives

We will focus here on C/C++ syntax, FORTRAN syntax slightly different:

#pragma omp <directive name> [<clauses>] (C/C++)
I$0MP [END] <directive name> [<clauses>] (Fortran)
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OpenMP - Compiler Directives

We will focus here on C/C++ syntax, FORTRAN syntax slightly different:

#pragma omp <directive name> [<clauses>] (C/C++)
I$OMP [END] <directive name> [<clauses>] (Fortran)
Used for:
@ Defining parallel regions / spawning threads
@ Distributing loop iterations or sections of code between threads
o Serializing sections of code (e.g. for access to 1/O or shared variables)
@ Synchronizing threads

You can find a reference sheet for the C/C++ API for OpenMP 4.0 in the
source code archive for this workshop.
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OpenMP - Runtime Library Routines

@ These routines are provided by the openmp library are used to
configuring and monitoring the multithreading during execution: e.g.
omp_get_num threads returns number of threads in current team
omp_in parallel check if in parallel regions
omp_set_schedule modify scheduler policy
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OpenMP - Runtime Library Routines

@ These routines are provided by the openmp library are used to
configuring and monitoring the multithreading during execution: e.g.

omp_get_num threads returns number of threads in current team
omp_in parallel check if in parallel regions
omp_set_schedule modify scheduler policy

@ There are further routines for locks for synchronization/access control
(see later)

@ as well as timing routines for recording elapsed time for each thread.
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OpenMP - Environment variables

@ Like for most programs in the UNIX world, environmental variables
are used to store configurations needed for running the program. In
OpenMP, they are used for setting e.g. the number of threads per
team (OMP_NUM_THREADS), maximum number of threads
(OMP_THREAD_LIMIT) or the scheduler policy (OMP_SCHEDULE).
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OpenMP - Environment variables

@ Like for most programs in the UNIX world, environmental variables
are used to store configurations needed for running the program. In
OpenMP, they are used for setting e.g. the number of threads per
team (OMP_NUM_THREADS), maximum number of threads
(OMP_THREAD_LIMIT) or the scheduler policy (OMP_SCHEDULE).

@ While most of these settings can also be done using clauses in the
compiler directives of runtime library routines, environmental variables
provide a user an easy way to change these crucial settings without
the need of an additional config file (parsed by your program) or even
rewritting /recompiling the openmp-enhanced program.
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OpenMP - Worksharing
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OpenMP - Worksharing (examples)

#include <omp.h>
#define N 1000

main(int arge, char *argv[]) {

int i;

float a[N], bI[N], c[N], d[N];
#include <omp.h> /* Some initializations %/
#define N 1000
#define CHUNKSIZE 100

Ll - i+ 228

main(int arge, char *argv(l) ( ! #define N 1000

#pragma omp parallel shared(a,b,c,d) private (i) #define CHUNKSIZE 100
{

#include <omp.h>

int i,
Float atnl, bm, cINl; main (int arge, char *argv[]) {

#pragma omp sections nowait
/* Some initializations ¥/

for i< N; i+4)
ali] = bli] =i * 1.0;
chunk = CHUNKSIZE;

int i, chunk;
float a[N], b[N], <[N];

4pragma omp section

t ]< "ybt"‘]“) /* Some initializations */
alil + blal; PR
#pragma omp parallel shared(a,b,c,chunk) private (i) iy WA

: .0

ﬁpan(mn omp section chunk = CHUNKSIZE;

£ < N; i)
#pzngmn omp for schedule (dynamic, chunk) nowait ali] * blil;
H ey #pragma omp parallel for \
Tli] = ali) + bILls } /% end of sections */ shared (a, b, ¢, chunk) private (i) \

schedule (static, chunk)
} /* end of parallel region */ } /* end of parallel region */ for (i=0; i < n; i++4)
cli] = a[i] #+ b[i];
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OpenMP - advanced Worksharing
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OpenMP - advanced Worksharing

master thread

o defines explicit tasks similar to sections that
are generated (usually by a single task) and
then deferred to any thread in the team via
a queue/scheduler

team

generates tasks

master thread
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OpenMP - advanced Worksharing

master thread

[
v
SI._E team
| generates tasks
LA v

master thread
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o defines explicit tasks similar to sections that
are generated (usually by a single task) and
then deferred to any thread in the team via

a queue/scheduler

@ tasks are not necessarily tied to a single

thread, can be e.g. postponed or migrated

to other threads

o allows for defining dependencies among

tasks (e.g. task X has to finish before any

thread can work on task Y)
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OpenMP - advanced Worksharing (example)

#include <omp,h>
float sum(const float *a, size_t n)
master thread {

// base cases
if (n == 0) {

return 0;
}
else if (n == 1) {
return 1;
}
SI._E team
// recursive case
generates tasks size t half =n / 2;

float x, y;

o) tasks #pragma omp parallel shared(x,y)

#pragma omp single nowait

{
JOIN #pragma omp task shared(x)
X = sum(a, half);

#pragma omp task shared(y)
y = sum(a + half, n - half);

#pragma omp taskwait
l master thread FLETS MBS

X 4= y;
}

return x;

u]
)
I
il
it
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OpenMP - Synchronization / Flow control

In the 'Introduction to Parallelization’, we discussed the need of
controlling the execution of threads at certain points to e.g. synchronize
them to exchange intermediate results or to protect resources from getting
accessed simultaneously with non-deterministic outcome ('race condition’).
OpenMP provides two ways to do this:
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controlling the execution of threads at certain points to e.g. synchronize
them to exchange intermediate results or to protect resources from getting
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OpenMP provides two ways to do this:

@ Compiler Directives:

» (for general parallel regions) e.g.

cancel,single master,critical,atomic, barrier
> (for loops) ordered
> (for tasks) taskwait, taskyield
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OpenMP - Synchronization / Flow control

In the 'Introduction to Parallelization’, we discussed the need of
controlling the execution of threads at certain points to e.g. synchronize
them to exchange intermediate results or to protect resources from getting
accessed simultaneously with non-deterministic outcome ('race condition’).
OpenMP provides two ways to do this:

@ Compiler Directives:

» (for general parallel regions) e.g.
cancel,single master,critical,atomic, barrier

> (for loops) ordered
> (for tasks) taskwait, taskyield

@ Runtime Library Routines:
omp_set_lock,omp_unset_lock,omp_test_lock
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OpenMP - Synchronization / Flow control
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master thread
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OpenMP - Synchronization / Flow control (MUTEX)

CRITICAL / ATOMIC

master thread
v
v v v ¥
CRITICAL
JOIN

master thread

v

#1 executes
#3 entered

master thread
v

v L4 L v

.. CRITICAL

master thread

v

#1 exited
#3 executes

master thread

—

¥ v L4 v
CRITICAL
!

JOIN

master thread

v

v

73 exited
#2 executes

master thread

%.

LA N A

. CRITICAL

L
JOIN

master thread

@ CRITICAL,ATOMIC exclusive for ALL threads, not just team

@ CRITICAL regions can be named, regions with same name treated as

same region
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OpenMP - Memory management (CLAUSES)

@ Certain clauses for compiler directives allow us to specify how data is
shared (e.g. shared, private, threadprivate) and how they are
initialized (e.g.firstprivate, copyin)
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@ Others like copyprivate allow for broadcasting the content of
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@ Similarly, the reduction clause provides an elegant way to gather
private data from the threads when joining them
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OpenMP - Memory management (CLAUSES)

@ Similarly, the reduction clause provides an elegant way to gather
private data from the threads when joining them

#include <omp.h>
main(int arge, char *argv[]) {

int i, n, chunk;

int a[l00], b[100], result;

n = 100;

chunk = 10;

result = 0.0;

for (i=0; i < n; i++) {

a[i] = 1i;
b[i] = i*2;
}

fpragma omp parallel for A
default(shared) private(i) \
schedule(static, chunk) \

reduction(+:result)

for (i=0; i < n; i++)
result = result + (a[i] * b[i]);

printf("result= %d\n",result);
}
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OpenMP - Memory management (FLUSHING DATA)
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OpenMP - Memory management (FLUSHING DATA)

@ even if shared, sometimes variable may not be updated in the
"global” view, e.g. if kept in a register or cache of a CPU instead of
the shared memory
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OpenMP - Memory management (FLUSHING DATA)

@ even if shared, sometimes variable may not be updated in the
"global” view, e.g. if kept in a register or cache of a CPU instead of
the shared memory

@ while many directives (e.g. for, section, critical) implicitly flush
variable to synchronize them with other threads, sometimes explicit
flushing using the £1ush may be necessary.
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OpenMP - Memory management (STACK)

User Address Space
Thread 2 | routine2() wvarl
stack varz2
var3
Thread 1 | routinel() varl
var2
main()
text routinel ()
routine2 ()
arrayA
data arrayB
heap
= = = = £ DA
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OpenMP - Memory management (STACK)

@ OpenMP standard does not specify a ser Address Space

default stack size for each thread. So Thread 2 | zoutinez() vast

depends on the compiler e.g. stack var3

| Compiler | Approx Stack Limit | PR [Prepseyr—
icc/ifort (Linux) 4 MB stack vasz
gcc/gfort (Linux) 2 MB

main()
text routinel ()
routine2 ()

arrayA
arrayB
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OpenMP - Memory management (STACK)

@ OpenMP standard does not specify a ser Address Space

default stack size for each thread. So Thread 2 | zoutinez() vast
depends on the compiler e.g. stack var3
| Compiler | Approx Stack Limit | PR [Prepseyr—
icc/ifort (Linux) 4 MB stack vasz
gcc/gfort (Linux) 2 MB
o if stack allocation exceeded, may result main{}
. . text routinel ()
in seg fault or (worse) data corruption. routinez(
daa | T2
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OpenMP - Memory management (STACK)

@ OpenMP standard does not specify a
default stack size for each thread. So
depends on the compiler e.g.

| Compiler | Approx Stack Limit |
icc/ifort (Linux) 4 MB
gcc/gfort (Linux) 2 MB

o if stack allocation exceeded, may result
in seg fault or (worse) data corruption.

@ Env. variable OMP_STACKSIZE allows to
set stacksize prior to execution. So if
your program needs an significant
amount of data on the stack, make sure
to adapt the stacksize this way!

JAS (ICG, Portsmouth)
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User Address Space

Thread 2
stack

routine2() wvarl
varz2
var3

Thread 1

routinel() wvarl
var2

main()
routinel ()
routine2 ()

arrayA
arrayB
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POSIX Threads
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PThreads - History/Goals

o standardized API for multithreading to allow for portable threaded
applications
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PThreads - History/Goals

o standardized API for multithreading to allow for portable threaded
applications

o first defined in IEEE POSIX standard 1003.1c in 1995, but undergoes
continuous evolution /revision
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PThreads - History/Goals

o standardized API for multithreading to allow for portable threaded
applications

o first defined in IEEE POSIX standard 1003.1c in 1995, but undergoes
continuous evolution /revision

@ historically implementations focused on Unix as OS, but
implementations also exist now for others e.g. for Windows
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PThreads - Compiling & Running
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PThreads - Compiling & Running

@ Like for OpenMP, POSIX Threads are included in most recent
compiler suites by default
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PThreads - Compiling & Running

@ Like for OpenMP, POSIX Threads are included in most recent
compiler suites by default

@ To enable these included libraries, use e.g.

icc -pthread for INTEL (Linux)
gcc -pthread  for GNU (Linux)
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PThreads - API

@ The subroutines defined in the APl can be classified into four major
groups:

Thread management For creating new threads, checking their
properties and joining/destroying them and the end of
their lifecycle (pthread_,pthread_attr.)

Mutexes For creating mutex locks to control excess to exclusive
resources (pthread mutex_,pthread mutexattr.)

Condition variables routines for managing condition variable to allow
for easy communication between threads that share a
mutex (pthread_cond_,pthread condattr.)

Synchronization barriers, read/write locks
(pthread barrier_pthread rwlock.)
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PThreads - API

@ The subroutines defined in the APl can be classified into four major
groups:

Thread management For creating new threads, checking their
properties and joining/destroying them and the end of
their lifecycle (pthread_,pthread_attr.)

Mutexes For creating mutex locks to control excess to exclusive
resources (pthread mutex_,pthread mutexattr.)

Condition variables routines for managing condition variable to allow
for easy communication between threads that share a
mutex (pthread_cond_,pthread condattr.)

Synchronization barriers, read/write locks
(pthread barrier_pthread rwlock.)
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PThreads - Thread management: Creation & Termination
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PThreads - Thread management: Creation & Termination

@ POSIX threads (pthread-t) are created explicitly using the
pthread create(thread,attr,start_routine,arg) where

> attr is a thread attribute structure containing settings for
creating/running thread

» start_routine is a procedure that works as a starting point for the
thread

» arg is a pointer to the argument for the starting routine (can be
pointing to a single data element, an array or a custom data structure)
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PThreads - Thread management: Creation & Termination

@ POSIX threads (pthread-t) are created explicitly using the
pthread create(thread,attr,start_routine,arg) where

> attr is a thread attribute structure containing settings for
creating/running thread

» start_routine is a procedure that works as a starting point for the
thread

» arg is a pointer to the argument for the starting routine (can be
pointing to a single data element, an array or a custom data structure)

@ They terminate when finishing their starting routine, calling
pthread _exit(status) to return a status flag, by another thread by
calling pthread_cancel (thread) with thread pointing to them or
the host process finishing first (without pthread_exit () call)
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PThreads - Thread management: Example

#include <pthread.h>
#include <stdio.h>

#define NUM_THREADS 5
void *PrintHello(veid *threadid)
{
long tid;
tid = (long)threadid;
printf ("Hello World! It's me, thread #%ld!\n", tid);
pthread exit (NULL);
}
int main (int arge, char *argv[])
{
pthread_t threads|[NUM_THREADS];
int re;
long t;
for (t=0; t<NUM_THREADS; t++){
printf ("In main: creating thread %ld\n", t);
rc = pthread create(&threads[t], NULL, PrintHello, (wvoid *)t);
if (re){
printf ("ERROR; return cede from pthread create() is %d\n", rc);
exit (-1);
1
1
/* Last thing that main() should do */
pthread_exit (NULL);
1
JAS (ICG, Portsmouth) Implementation of Parallelization May 9, 2018
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PThreads - Thread management: Joining & Detaching
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PThreads - Thread management: Joining & Detaching

@ “Joining” threads allows the master thread to synchronize with its
worker threads on completion of their task
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PThreads - Thread management: Joining & Detaching

@ “Joining” threads allows the master thread to synchronize with its
worker threads on completion of their task

;‘:r:':; pthread create()) ———————m pthread join()| — m

Worker
Thread
DOWORK ——— pthread exit()

Worker
Thread
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PThreads - Thread management: Joining & Detaching

@ “Joining” threads allows the master thread to synchronize with its
worker threads on completion of their task

:‘:r:':; pthread_create () ————— pthrndr_ 30in()| —

Worker
Thread
DOWORK ———® pthread exit()
Worker
Thread

@ threads can be declared “joinable” on creation
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PThreads - Thread management: Joining & Detaching

@ “Joining” threads allows the master thread to synchronize with its
worker threads on completion of their task

:‘:r:‘:; pthread_create()) ——————# pthread join()| —

Thread
DOWORK ———» pthread exit()
Worker
@ threads can be declared “joinable” on creation

@ data (Thread Control Block) remains in memory after completion of a
thread until pthread_join is called on this dead thread and the
clean-up is triggered
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PThreads - Thread management: Joining & Detaching

@ “Joining” threads allows the master thread to synchronize with its
worker threads on completion of their task

:‘:r:‘:; pthread_create()) ——————# pthread join()| —

Worker
Thread
DOWORK ———» pthread exit()
Worker
Thread

@ threads can be declared “joinable” on creation

@ data (Thread Control Block) remains in memory after completion of a

thread until pthread_join is called on this dead thread and the
clean-up is triggered

e “detached” threads do not keep such (potentially unnecessary) data,

i.e. get cleaned up directly on completion
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PThreads - Mutexes

@ Mutexes work in similar way as the OpemMP locks: once claimed by
one thread, other threads encountering it will be hold until the mutex
released again.
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PThreads - Joining & Mutexes: Example

#define NUMTHRDS 4
#define VECLEN 100000
DOTDATA dotstr;
pthread t callThd [NUMTHRDS]:
Bthread mutex t mutexsum;

[-]

‘(’°id *dotprod(void *arg) pthread mutex init(smutexsum, NULL);
(-] [/* create threads to perform the dotproduct */
phread attr init(sattr);

mysum = 0; pthread attr setdetachstate(&aktr, PTHREAD CREATE_JOINABLE);
for (i=start; i<end ; it+)

{ for (i=0; i<NUMTHRDS;i++)

mysum += (x[1] * y[i]); {
) /* Each thread works on a different set of data.

* The offset is specified by 'i'. The size of
* the data for each thread is indicated by VECLEN.
*/

bthread mutex lock (&mutexsum):
+= 3

bpthread create(&callThd[i], &aktr, detpred, (void *)i);

¥

printf("Thread $1ld did ®d to %d: mysum=tf global sum=
$f\n",offset, start,end, mysum, dotstr.sum);
pthread mutex unlock (&mutexsum);

pthread_attr_destroy (&attr);

. . /* Wait on the other threads */
pthread exit((void*) 0);

} for(i=0;i<NUMTHRDS;i++) {

| o pthread_join(callThd[i], &status);

int main (int arge, char *argv(]) }

{ /* After joining, print out the results and cleanup */

long i;

double *a, *b; printf ("sum = %f \n", dotstr,sum);
void *status; free (a);

pthread attr t attr; free (b);

pthread mutex destroy(&mutexsum);
pthread exit(NULL);

a = (double*) malloc (NUMTHRDS*VECLEN*sizeof(double));
11 i

of (double))
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PThreads - Condition variables

@ Conditions variables control the flow of threads like Mutexes
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PThreads - Condition variables

@ Conditions variables control the flow of threads like Mutexes

@ instead of claiming a lock, it allows threads to wait
(pthread_cond_wait ()) until another thread send a signal
(pthread_cond_signal()) through the condition variable to
continue.
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PThreads - Synchronization: Barriers
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PThreads - Synchronization: Barriers

@ POSIX Threads also feature a synchronization barrier similar to
OpenMP.
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PThreads - Synchronization: Barriers

@ POSIX Threads also feature a synchronization barrier similar to
OpenMP.

@ Since there are no "team” structure like in OpenMP, on creation a
number of threads is defined, that has to reach the barrier before any
of them is allowed to pass.

JAS (ICG, Portsmouth) Implementation of Parallelization May 9, 2018 29 / 48



PThreads - Memory management

JAS (ICG, Portsmouth)

Implementation of Parallelization



PThreads - Memory management

@ As for OpenMP, POSIX does not dictate the (default) stack size for a
thread and thus can vary greatly.
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PThreads - Memory management

@ As for OpenMP, POSIX does not dictate the (default) stack size for a
thread and thus can vary greatly.

@ So better explicitly allocate enough stack to provide portability and
avoid segmentation faults or data corruption
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PThreads - Memory management

@ As for OpenMP, POSIX does not dictate the (default) stack size for a
thread and thus can vary greatly.

@ So better explicitly allocate enough stack to provide portability and
avoid segmentation faults or data corruption

@ use pthread_attr_setstacksize to set the desired stacksize in the
attribute object used for creating the thread.
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MPI - History/Goals

o Goals:

Standardization De-facto industry “standard” for message passing.
Portability Runs on a huge variety of platforms, allows for
parallelization on very heterogeneous clusters
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MPI - History/Goals

o Goals:

Standardization De-facto industry “standard” for message passing.
Portability Runs on a huge variety of platforms, allows for
parallelization on very heterogeneous clusters

@ First presented at supercomputing conference in 1993, initial releases
in 1994 (MPI-1), 1998 (MPI-2), 2012 (MPI-3)
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MPI - History/Goals

o Goals:

Standardization De-facto industry “standard” for message passing.
Portability Runs on a huge variety of platforms, allows for
parallelization on very heterogeneous clusters

o First presented at supercomputing conference in 1993, initial releases
in 1994 (MPI-1), 1998 (MPI-2), 2012 (MPI-3)

e Many popular implementations e.g. OpenMPI (free), Intel MPI,
MPICH
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MPI - Compiling & Running

@ For compiling MPI programs, each implementation comes with
specific “wrapper” scripts for the compilers, e.g.

I GNU [ Tntel
[« mpicc
OpenMPI C++ mpiCC/mpic++/mpicxx
Fortran mpifort
C mpicc/mpigcc mpicc/mpiicc
Intel MPI C++ mpi{CC,c++,cxx}/mpigxx mpi{CC,c++,cxx}/mpiicpc
Fortran mpifort mpifort¥/mpiifort

JAS (ICG, Portsmouth)

Implementation of Parallelization

May 9, 2018

33 /48



MPI - Compiling & Running

@ For compiling MPI programs, each implementation comes with
specific “wrapper” scripts for the compilers, e.g.

li GNU | Tntel
[« mpicc
OpenMPI C++ mpiCC/mpic++/mpicxx
Fortran mpifort
C mpicc/mpigcc mpicc/mpiicc
Intel MPI C++ mpi{CC,c++,cxx}/mpigxx mpi{CC,c++,cxx}/mpiicpc
Fortran mpifort mpifort*/mpiifort

@ For running a MPI program, we use mpirun, which starts as many
copies of the program as requested on nodes provided by the batch

system, e.g.

JAS (ICG, Portsmouth)

mpirun -np 4 my_program
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MPI - Init & Finalize

e Before using any MPI routine (or better as early as possible), the MPI
framework must be initialized by calling MPI_Init (&argc,&argv),
which also broadcast the command line arguments to all processes
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MPI - Init & Finalize

e Before using any MPI routine (or better as early as possible), the MPI
framework must be initialized by calling MPI_Init(&argc,&argv),
which also broadcast the command line arguments to all processes

@ At the end of your program, always call MPI Finalize() to properly
terminate/clean up the MPI execution environment
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MPI - Communicators

@ MPI uses communicators to define which processes may communicate
with each other - in many cases, the predefined MPI_COMM_WORLD,
which includes all MPI processes.
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MPI - Communicators

@ MPI uses communicators to define which processes may communicate
with each other - in many cases, the predefined MPI_COMM_WORLD,
which includes all MPI processes.

@ each process has a unique rank within the communicator. You can
get the rank for a process with the command
MPI_Comm_rank (comm,&rank) as well as the total size of the
communicator (MPI_Comm size (comm,&size))
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MPI - Example 1

#include "mpi.h"
#include <stdio.h>

int main(int arge, char *argv[]) {
int numtasks, rank, len, rc;
char hostname[MPI_ MAX PROCESSOR_NAME];

// initialize MPI
MPI Init (&argc, &argv);

// get number of tasks
MPI Comm size (MPI_COMM WORLD, &numtasks);

// get my rank
MPI Comm rank (MPI_COMM WORLD, &rank) ;

// this one is obvious

MPI_Get_ processor_name (hostname, &len);
printf ("Number of tasks= %d My rank= %d Running on %s\n", numtasks,rank,hcstname);

// do some work with message passing

// done with MPI
MPI_Finalize();
}
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MPI - Communication

@ In MPI there are routines for Point-to-Point communication (i.e. from
one process to exactly one other) as well as for collective
communication
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MPI - Communication

@ In MPI there are routines for Point-to-Point communication (i.e. from
one process to exactly one other) as well as for collective
communication

@ a Point-to-Point communication always consists of a send and a
matching receive (or combined send/recv) routines
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MPI - Communication

@ In MPI there are routines for Point-to-Point communication (i.e. from
one process to exactly one other) as well as for collective
communication

@ a Point-to-Point communication always consists of a send and a
matching receive (or combined send/recv) routines

@ those routines can be blocking and non-blocking, non-synchronous
and synchronous
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MPI - Communication: Buffering

process A

process B

system buffer

Path of a message buffered at the receiving process
JAS (ICG, Portsmouth)
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MPI - Communication: Blocking vs Non-Blocking

Blocking A blocking send (MPI_Send(...)) waits until message is
processed by local MPI (does not mean, that message has
been received by other processes!), for waiting for confirmed
processing by recipient, use synchronous blocking send
(MPI_Ssend(...)); a blocking receive waits until data is
received and ready for use

Non-Blocking Non-blocking send/receive routines
(MPI_Isend(...) MPI Irecv(...) MPI Issend(...))
work like their blocking counter-parts, but only request the
operation and do not wait for its completion. Instead they
return a request object that can be used to test/wait (e.g.
MPI Wait(...),MPI_Probe(...)) until operation has been
processed /certain status is reached for one or more request
simultaneously.
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MPI - Communication: Syntax

MPI_Isend(&buffer,count,datatype,dest,tag,comm,&request)
MPI Recv(&buffer,count,datatype,src,tag,comm,&status)
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MPI - Communication: Syntax

MPI_Isend(&buffer,count,datatype,dest,tag,comm,&request)
MPI Recv(&buffer,count,datatype,src,tag,comm,&status)

with
buffer Memory block to send/receive data from/to
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MPI - Communication: Syntax

MPI_Isend(&buffer,count,datatype,dest,tag,comm,&request)
MPI Recv(&buffer,count,datatype,src,tag,comm,&status)
with
buffer Memory block to send/receive data from/to

count Number of data elements to be sent/ maximum number to
be received (see MPI_Get_count () for received amount)
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MPI - Communication: Syntax

MPI_Isend(&buffer,count,datatype,dest,tag,comm,&request)
MPI Recv(&buffer,count,datatype,src,tag,comm,&status)

with
buffer Memory block to send/receive data from/to
count Number of data elements to be sent/ maximum number to
be received (see MPI_Get_count () for received amount)
datatype One of the predefined elementary MPI data types or derived
data types
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MPI - Communication: Syntax

MPI_CHAR char

MPI_WCHAR wehar_t - wide character
MPI_SHORT signed short int
MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG_INT

ETatengon signed long long int

MPI_SIGNED_CHAR signed char
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned it
MPI_UNSIGNED_LONG unsigned long int
MPI_UNSIGNED_LONG_LONG | unsigned long long int
MPI_FLOAT float

MPI_DOUBLE double
MPI_LONG_DOUBLE long double

MPI_C_COMPLE:

X
MPI_C_FLOAT_ COMPLEX float_Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_LONG_DOUBLE_COMPLEX |long double _Complex

MPI_C_BOOL _Bool
MPI_INTS_T intg_t
MPI_INT16_T int16_t
MPI_INT32_T int32_t
MPI_INT64_T int64_t
MPI_UINTS T uintg_t

MPI UINT16_T uint16_t

MPI UINT32 T uint32_t
MPI_UINT64_T uints4_t
MPI_BYTE 8 binary digits.
MPI_PACKED data packed or unpacked with

MPI_Pack()/ MPI_Unpack

Implementation of Parallel




MPI - Communication: Syntax

MPI_Isend(&buffer,count,datatype,dest,tag,comm,&request)
MPI Recv(&buffer,count,datatype,src,tag,comm,&status)

with
buffer Memory block to send/receive data from/to
count Number of data elements to be sent/ maximum number to
be received (see MPI_Get_count () for received amount)
datatype One of the predefined elementary MPI data types or derived
data types
dest/src Rank of the communication partner (within the used shared
communicator); wildcard MPI_ANY_SOURCE
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MPI - Communication: Syntax

MPI_Isend(&buffer,count,datatype,dest,tag,comm,&request)
MPI Recv(&buffer,count,datatype,src,tag,comm,&status)

with
buffer Memory block to send/receive data from/to
count Number of data elements to be sent/ maximum number to
be received (see MPI_Get_count () for received amount)
datatype One of the predefined elementary MPI data types or derived
data types
dest/src Rank of the communication partner (within the used shared
communicator); wildcard MPI_ANY_SOURCE
tag arbitrary non-negative (short) integer; same for send &
receive (unless wildcard MPI_ANY_TAG used for recv)
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MPI - Communication: Syntax

MPI_Isend(&buffer,count,datatype,dest,tag,comm,&request)
MPI Recv(&buffer,count,datatype,src,tag,comm,&status)

with
buffer
count
datatype
dest/src

tag

comm

Memory block to send/receive data from/to

Number of data elements to be sent/ maximum number to
be received (see MPI_Get_count () for received amount)
One of the predefined elementary MPI data types or derived
data types

Rank of the communication partner (within the used shared
communicator); wildcard MPI_ANY_SOURCE

arbitrary non-negative (short) integer; same for send &
receive (unless wildcard MPI_ANY_TAG used for recv)
communicator
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MPI - Communication: Syntax

MPI_Isend(&buffer,count,datatype,dest,tag,comm,&request)
MPI Recv(&buffer,count,datatype,src,tag,comm,&status)

with
buffer Memory block to send/receive data from/to
count Number of data elements to be sent/ maximum number to
be received (see MPI_Get_count () for received amount)
datatype One of the predefined elementary MPI data types or derived
data types
dest/src Rank of the communication partner (within the used shared
communicator); wildcard MPI_ANY_SOURCE
tag arbitrary non-negative (short) integer; same for send &
receive (unless wildcard MPI_ANY_TAG used for recv)
comm communicator
request allocated request structure used to communicate progress of
comm. process for non-blocking routines
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MPI - Communication: Syntax

MPI_Isend(&buffer,count,datatype,dest,tag,comm,&request)
MPI Recv(&buffer,count,datatype,src,tag,comm,&status)

with
buffer
count
datatype
dest/src

tag

comm
request

status

Memory block to send/receive data from/to

Number of data elements to be sent/ maximum number to
be received (see MPI_Get_count () for received amount)
One of the predefined elementary MPI data types or derived
data types

Rank of the communication partner (within the used shared
communicator); wildcard MPI_ANY_SOURCE

arbitrary non-negative (short) integer; same for send &
receive (unless wildcard MPI_ANY_TAG used for recv)
communicator

allocated request structure used to communicate progress of
comm. process for non-blocking routines

allocated status structure containing source & tag for receive

A N
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MPI - Collective Communication

More efficient data exchange with multiple processes
always involves all processes in one communicator

can only used with predefined datatypes

can be blocking or non-blocking (since MPI-3)
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MPI - Collective Comm. [Broadcast/Scatter/Gather|

data —
8| 4 Ag
g A
<] broadcast
g
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A
gather A,
< [~
As
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MPI - Collective Communication [Allgather,Alltoall]
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MPI - Collective Communication [Reduce,Allreduce]

data ——
Bl ag]a,[a,]25] 2] A5 S0/ S1|52|53| 84| Ss
g Bo| 8,8, Ba] B B
a ColCy|CalCalCy|Cy reduce
10001 D,|04|0,4| 04 |:>
Eo| Ey| Es|Eal E4| Es
Fol Fy| Fal Fa| Fal Fs
‘ S;=A;0B;oC;oD;0E; oF;
Aol Ay A As] Ay] Ag sol54]55]5a] 54] 55
B[ 81]82[Ba[ B4 Bs|  Apreduce so| 4[] 54| 54| 55
cole,lesles] eyl s So| 5¢[55|54| 54|55
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data —
§ Ag|[A1]Az[ A3 Au| As
g By|By|B,|Ba| Byl Bs
g|cylc,|cy|Ca|CylCs
I CADALALALALR
Eg|Ey|Es|Eal Byl Es
Fol Fi| Fal Fa| Ful Fs

reduce

—>

‘ S;=A;0BjoCjoDjoE; oF

MPI_MAX maxmum integer. float

MPI_MIN mnmum intager, fioat

¥PI_suy sum integer, float

MPI_PROD product integer. float

MPI_LAND logical AD imzger

NP T_manD bitise AND integer, MFI_BYTE
MPI_LOR logical OR integer

MPI_BOR bitwise OR integer, MPLBYTE
MPI_LXOR logical XOR inieger

MPI_EXOR bituise XOR integer, MFI_BYTE

MPY MAXLOC max value and location float, doudle and long double
NP3_MINLOC min valse and locaiion float, double and long deuble

MPI - Collective Communication [Reduce,Allreduce]
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MPI - Collective Communication: Example

#include "mpi.h"
#include <stdio,h>
#include <math.h>

main(int arge, char *argv(]) {

A

JAS (ICG, Portsmouth)

int numtasks, rank, n, i, root, chunk;
Aint a[100], b[100], result, final result;

MEL Init(&arge,&argy);
MPI Comm_rank(MPI COMM WORLD, &rank);
MEI Comm_size (MBI COMM_WORLD, &numtasks);

root = 0;
result = 0;

n = 100;
chunk = ceil(n / numtasks);

for (i=rank*chunk; i<100; i++) {
result = result + (a[i] * b[i]);

}

MPI Reduce(&result,&final_result,1,MPI_INT,MPI_SUM,
root,MPI COMM WORLD);

if (rank == root) {

printf("result= %d\n",final result);
}

MPI Finalize();
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MPI - Multithreading

@ As shown in the 'Introduction’ talk, you can combine Multithreading
and Multiprocessing, BUT ...

@ you have to check whether your MP| implementations is thread-safe.
MPI libraries vary in their level of thread support:
MPI_THREAD_SINGLE no multithreading supported
MPI_THREAD FUNNELED only main thread may make MPI calls
MPI_THREAD_SERIALIZED MPI calls are serialized i.e. cannot be

processed concurrently
MPI_THREAD MULTIPLE thread-safe
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Debugging
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Debugging

@ As for analyzing and tuning parallel program performance, debugging
can be much more challenging for parallel programs than for serial
programs (in particular for MPI programs)
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Debugging

@ As for analyzing and tuning parallel program performance, debugging
can be much more challenging for parallel programs than for serial
programs (in particular for MPI programs)

@ And again, unfortunately, covering this topic in any detail would go
beyond the scope of this introduction to parallel program.
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Debugging

@ As for analyzing and tuning parallel program performance, debugging
can be much more challenging for parallel programs than for serial
programs (in particular for MPI programs)

@ And again, unfortunately, covering this topic in any detail would go
beyond the scope of this introduction to parallel program.

@ While popular open source debuggers like gdb provide facilites for
debugging multi-threaded programs, MPI debugging relies on
commercial solutions like DDT or TotalView
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