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Homework (Data Collection)

What do you belief is the share of winnable deals?

How many deals have you played? How many won?
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MARCOV CHAIN MONTE CARLO
SAMPLING
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Motivation

In 1946, while recovering from a brain surgery, Stanislav Ulam, who
worked on the Manhattan Project (cf. Teller-Ulam design) & playing
a solitaire card game, started wondering what the chances of winning
are.

Given the huge amount of possible moves (cards dealt & played), the
problem turned out to be very challenging to be solved purely
combinatorically.
Ulam had the idea to simply count the number of won and lost games
instead. He reasoned that with enough games, the ratio of won vs
played games should become a good approximation of the true
chance of winning.
He also realized that this technique could be applied to physical
problems.
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Homework (Analysis)

Our estimated ratio of winnable games is fwinnable = W /N =. . .

Win-Lose scenario with fixed probability follows a binomial
distribution. Hence, there is a 68% (95%) chance that the true
probability lies within 1 (2) σ of our estimate with:

σ2 = fwinnable(1− fwinnable)/N = . . .
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From cards to nukes

John von Neumann

Ulam told his colleague John von
Neumann, a pioneer in computer
science (besides many other fields of
expertise) about his idea.

Von Neumann realized the potential
of using it in combination with the
new ”electronic computing” and
proposed a program to apply it to
neutron scattering.

Instead of solving the problem
statistically for the whole assemble
of neutrons, he proposed to follow a
subset of neutrons and decide
randomly the outcome of events
those neutron face (e.g. either
fission, scattering or absorbtion)
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Monte Carlo Sampling

Algorithm:

1 Define an domain for input

2 Generate random inputs from a
probability distribution over the
domain

3 Perform a deterministic
computation on the inputs

4 Aggregate results
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Monte Carlo Sampling
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MARCOV CHAIN MONTE CARLO
SAMPLING
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How to sample the proposal function:
Acceptance-Rejection Method

Von Neumann further came up with an algorithm to sample an arbitrary
(quasi-)probability density q using another, tractable one h.
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(quasi-)probability density q using another, tractable one h.

1 Choose a tractable density h(Θ) and a
constant C so C · h ≥ q ∀Θ

2 Draw a candidate parameter value Θ′ from h

3 Draw a random uniform number u ∈ [0, 1]

4 If u < C ·h(Θ′)
q(Θ′) accept Θ′ as a sample

5 Goto (2)
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Motivation: Bayesian inference

In Bayesian inference, we take both new data (aka evidence) as well
as a prior belief into account when computing the probability for a
certain model and its parameters {Θi}

In case of Solitaire, we consider a deal as a binary random event with
a given probability p to obtain one result (win) and (1− p) the other
(lose).

According to Bayes’ theorem, this posterior belief is given by

P({Θi}|Data)︸ ︷︷ ︸
Posterior Prob.

= P({Θi})︸ ︷︷ ︸
Prior Prob.

·P(Data|{Θi})︸ ︷︷ ︸
Likelihood

/ P(Data)︸ ︷︷ ︸
Model evidence
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Bayesian inference - Prior Belief/Probability

P({Θi}|Data) =P({Θi})︸ ︷︷ ︸
Prior Prob.

·P(Data|{Θi})/P(Data)

mathematical expression (i.e. pdf) quantifying our belief about the
model parameters

two approaches: least-/uninformative vs informative prior

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 13 / 42



Bayesian inference - Prior Belief/Probability

P({Θi}|Data) =P({Θi})︸ ︷︷ ︸
Prior Prob.

·P(Data|{Θi})/P(Data)

mathematical expression (i.e. pdf) quantifying our belief about the
model parameters

two approaches: least-/uninformative vs informative prior

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 13 / 42



Bayesian inference - Data Likelihood

P({Θi}|Data) = P({Θi})·P(Data|{Θi})︸ ︷︷ ︸
Likelihood

/P(Data)

probability of the data for a given parameter set for a specific model

for Solitaire, the likelihood function is the binomial distribution, i.e.
the likelihood that exactly k out of n random deals are winnable
assuming an underlying propability to win p is given by

L({k , n}|{p}) = Binom(k, n, p) =

(
n

k

)
pk(1− p)n−k

in general, more complicated (i.e. no analytical expression, can only
be computed numerically)
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Bayesian inference - Probability of Evidence

P({Θi}|Data) = P({Θi}) · P(Data|{Θi})/ P(Data)︸ ︷︷ ︸
Modelevidence

Obtained by marginalizing the Likelihood over all possible parameters
of a model type, i.e. the probabilty to obain specific data
independently of the choice of model parameters

P(Data) =

∫
P(Data|{Θi})P({Θi})d{Θi}

Usually very difficult/expensive to compute

Fortunately as a constant proportionality factor Z , we do not need to
know its value if we are only interested in ratios of posterior
propabilities:

P({Θi}|Data) ' P({Θi}) · P(Data|{Θi})
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Bayesian inference - Posterior Probability

P({Θi}|Data)︸ ︷︷ ︸
Posterior Prob.

' P({Θi}) · P(Data|{Θi})

In some cases, posterior likelihood can be analytically calculated e.g.
for our Solitaire model and an uninformative, flat prior or certain
analytical prior probability (here e.g. beta-distribution)
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Bayesian inference - Posterior Probability (uninformative
prior)
In general, the posterior for a flat, uninformative prior is identical to the
likelihood function (in the part of the parameter space of interest and
vanishes elsewhere)

P({Θi}|Data) = P(Data|{Θi}) |support

Thus, for our Solitaire example we get

P({p}|{n, k}) = Binom(n, k, p)
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Bayesian inference - Posterior Prob. (inform. prior)
If we have an informative analytical prior, e.g. here a
beta-distribution, we may still be able to calculate the posterior
analytically. For our Solitaire example, we obtain

P({p}|{n, k}) = Beta(p, x , y) · Binom(n, k , p)

= Beta(p, x + k , y + (n − k))

Here, posterior is again a beta-distr. i.e prior and posterior belong to
the same distribution family. Hence, this is called a conjugate prior
to this binomial likelihood.

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 18 / 42



Bayesian inference - Posterior Prob. (inform. prior)
If we have an informative analytical prior, e.g. here a
beta-distribution, we may still be able to calculate the posterior
analytically. For our Solitaire example, we obtain

P({p}|{n, k}) = Beta(p, x , y) · Binom(n, k , p)

= Beta(p, x + k , y + (n − k))

Here, posterior is again a beta-distr. i.e prior and posterior belong to
the same distribution family. Hence, this is called a conjugate prior
to this binomial likelihood.

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 18 / 42



Bayesian inference - Posterior Probability (cont.)

In general, this is not possible as the prior or the likelihood may not
be available as an analytical pdf (see e.g. your Solitaire prior beliefs)

cannot simply use MC + Acceptance-Rejection method to
sample/compute posterior as we don’t know our maximum density.
Even if we know it, for a high dimensional parameter space, rejection
rate will be very high due to difficult choice of bounding probability
density.

need to find an alternative more efficient way to sample such a
posterior

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 19 / 42



Bayesian inference - Posterior Probability (cont.)

In general, this is not possible as the prior or the likelihood may not
be available as an analytical pdf (see e.g. your Solitaire prior beliefs)

cannot simply use MC + Acceptance-Rejection method to
sample/compute posterior as we don’t know our maximum density.
Even if we know it, for a high dimensional parameter space, rejection
rate will be very high due to difficult choice of bounding probability
density.

need to find an alternative more efficient way to sample such a
posterior

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 19 / 42



Bayesian inference - Posterior Probability (cont.)

In general, this is not possible as the prior or the likelihood may not
be available as an analytical pdf (see e.g. your Solitaire prior beliefs)

cannot simply use MC + Acceptance-Rejection method to
sample/compute posterior as we don’t know our maximum density.
Even if we know it, for a high dimensional parameter space, rejection
rate will be very high due to difficult choice of bounding probability
density.

need to find an alternative more efficient way to sample such a
posterior

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 19 / 42



MARCOV CHAIN MONTE CARLO
SAMPLING
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Markov Chains: Definition

A Markov Chain is a sequence of events {St}
in which the probability of each event depends
only on the state attained in the previous event
(Markov property):

P(St |{St−1,St−2, . . . }) = P(St |St−1)

(Time-homog.) Transition kernel

P(St = y |St−1 = x) = T (y |x)
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Markov Chains: Definition (cont.)

Prob. to be in state y at time t:

P(St = y) = P(stay at y) + P(move to y)− P(move from y)

in discrete case:

P(St = y) = P(St−1 = y) +
∑
x 6=y

P(St−1 = x)T (y |x)

−
∑
x 6=y

P(St−1 = y)T (x |y))

can also be written as:

P(St = y) = P(St−1 = y)T (y |y) +
∑
x 6=y

P(St−1 = x)T (y |x)

⇒ ~P(St) = ~P(St−1)T = ~P(St−2)T 2 = . . .
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Markov Chains: Stationary Equilibrium

Let’s consider

~P(S0) =
(
P(S0 = A) P(S0 = E )

)
=
(
1 0

)
T =

(
T (A|A) T (A|E )
T (E |A) T (E |E )

)
=

(
0.6 0.7
0.4 0.3

)
and calculate the first few transitions using
~P(St) = ~P(St−1)T :

(
0
1

)
→
(

0.7
0.3

)
→
(

0.63
0.37

)
→
(

0.637
0.363

)
→
(

0.6363
0.3637

)
→ . . .

In general, for the Markov chain to have a stationary equilibrium
distribution, we need

Peq(St = y) = Peq(stay at y) ∀y

Hence Peq(move to y)− Peq(move from y) has to vanish.
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Markov Chains: Stationary Equilibrium (cont.)

in discrete case, we get:∑
x 6=y

[Peq(St−1 = x)T (y |x)− Peq(St−1 = y)T (x |y))] = 0

One sufficient (but not necessary) condition to satisfy this is:

Peq(St−1 = x)T (y |x) = Peq(St−1 = y)T (x |y))

which is called detailed balance condition.

if we want to sample a (non-tracable) probability function q using a
Markov chain, we simply have to pick a transistion kernel with q as
its equilibrium distribution !
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MCMC to the rescue!
Markov chains can be used to randomly sample a posterior q/Z with
the correct transition kernel T . But how to construct T?

Start with a proposal (or candidate) distribution k(y |x)
Using any k as T will not guarantee detailed balance, i.e.
q(x)k(y |x) 6= q(y)k(x |y) for some x 6= y
Let’s assume q(x)k(y |x) > q(y)k(x |y) for some x , y
Borrow from acceptance/rejection idea: Introduce acceptance
criterion with acceptance prob. α(y |x) to lower probability on LHS
and maximise it on RHS, i.e. construct transition kernel as follows:

T (y |x) = k(y |x)α(y |x) + [1− α(y |x)]δx ,y

In case above, we maximise RHS by setting α(x |y) = 1, thus
obtaining for x 6= y for the detailed balance condition:

q(x)T = q(y)T ⇔ q(x)k(y |x)α(x |y) = q(y)k(x |y)

⇔ α(y |x) =
q(y)k(x |y)

q(x)k(y |x)

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 26 / 42



MCMC to the rescue!
Markov chains can be used to randomly sample a posterior q/Z with
the correct transition kernel T . But how to construct T?
Start with a proposal (or candidate) distribution k(y |x)

Using any k as T will not guarantee detailed balance, i.e.
q(x)k(y |x) 6= q(y)k(x |y) for some x 6= y
Let’s assume q(x)k(y |x) > q(y)k(x |y) for some x , y
Borrow from acceptance/rejection idea: Introduce acceptance
criterion with acceptance prob. α(y |x) to lower probability on LHS
and maximise it on RHS, i.e. construct transition kernel as follows:

T (y |x) = k(y |x)α(y |x) + [1− α(y |x)]δx ,y

In case above, we maximise RHS by setting α(x |y) = 1, thus
obtaining for x 6= y for the detailed balance condition:

q(x)T = q(y)T ⇔ q(x)k(y |x)α(x |y) = q(y)k(x |y)

⇔ α(y |x) =
q(y)k(x |y)

q(x)k(y |x)

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 26 / 42



MCMC to the rescue!
Markov chains can be used to randomly sample a posterior q/Z with
the correct transition kernel T . But how to construct T?
Start with a proposal (or candidate) distribution k(y |x)
Using any k as T will not guarantee detailed balance, i.e.
q(x)k(y |x) 6= q(y)k(x |y) for some x 6= y

Let’s assume q(x)k(y |x) > q(y)k(x |y) for some x , y
Borrow from acceptance/rejection idea: Introduce acceptance
criterion with acceptance prob. α(y |x) to lower probability on LHS
and maximise it on RHS, i.e. construct transition kernel as follows:

T (y |x) = k(y |x)α(y |x) + [1− α(y |x)]δx ,y

In case above, we maximise RHS by setting α(x |y) = 1, thus
obtaining for x 6= y for the detailed balance condition:

q(x)T = q(y)T ⇔ q(x)k(y |x)α(x |y) = q(y)k(x |y)

⇔ α(y |x) =
q(y)k(x |y)

q(x)k(y |x)

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 26 / 42



MCMC to the rescue!
Markov chains can be used to randomly sample a posterior q/Z with
the correct transition kernel T . But how to construct T?
Start with a proposal (or candidate) distribution k(y |x)
Using any k as T will not guarantee detailed balance, i.e.
q(x)k(y |x) 6= q(y)k(x |y) for some x 6= y
Let’s assume q(x)k(y |x) > q(y)k(x |y) for some x , y

Borrow from acceptance/rejection idea: Introduce acceptance
criterion with acceptance prob. α(y |x) to lower probability on LHS
and maximise it on RHS, i.e. construct transition kernel as follows:

T (y |x) = k(y |x)α(y |x) + [1− α(y |x)]δx ,y

In case above, we maximise RHS by setting α(x |y) = 1, thus
obtaining for x 6= y for the detailed balance condition:

q(x)T = q(y)T ⇔ q(x)k(y |x)α(x |y) = q(y)k(x |y)

⇔ α(y |x) =
q(y)k(x |y)

q(x)k(y |x)

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 26 / 42



MCMC to the rescue!
Markov chains can be used to randomly sample a posterior q/Z with
the correct transition kernel T . But how to construct T?
Start with a proposal (or candidate) distribution k(y |x)
Using any k as T will not guarantee detailed balance, i.e.
q(x)k(y |x) 6= q(y)k(x |y) for some x 6= y
Let’s assume q(x)k(y |x) > q(y)k(x |y) for some x , y
Borrow from acceptance/rejection idea: Introduce acceptance
criterion with acceptance prob. α(y |x) to lower probability on LHS
and maximise it on RHS, i.e. construct transition kernel as follows:

T (y |x) = k(y |x)α(y |x) + [1− α(y |x)]δx ,y

In case above, we maximise RHS by setting α(x |y) = 1, thus
obtaining for x 6= y for the detailed balance condition:

q(x)T = q(y)T ⇔ q(x)k(y |x)α(x |y) = q(y)k(x |y)

⇔ α(y |x) =
q(y)k(x |y)

q(x)k(y |x)

JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 26 / 42



MCMC to the rescue!
Markov chains can be used to randomly sample a posterior q/Z with
the correct transition kernel T . But how to construct T?
Start with a proposal (or candidate) distribution k(y |x)
Using any k as T will not guarantee detailed balance, i.e.
q(x)k(y |x) 6= q(y)k(x |y) for some x 6= y
Let’s assume q(x)k(y |x) > q(y)k(x |y) for some x , y
Borrow from acceptance/rejection idea: Introduce acceptance
criterion with acceptance prob. α(y |x) to lower probability on LHS
and maximise it on RHS, i.e. construct transition kernel as follows:

T (y |x) = k(y |x)α(y |x) + [1− α(y |x)]δx ,y

In case above, we maximise RHS by setting α(x |y) = 1, thus
obtaining for x 6= y for the detailed balance condition:

q(x)T = q(y)T ⇔ q(x)k(y |x)α(x |y) = q(y)k(x |y)

⇔ α(y |x) =
q(y)k(x |y)

q(x)k(y |x)
JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 26 / 42



MCMC to the rescue! (cont.)

If q(x)k(y |x) < q(y)k(x |y), simply switch roles of x and y

Hence we obtain criterion

α(y |x) =

{
q(y)k(x |y)
q(x)k(y |x) if q(x)k(y |x) > q(y)k(x |y)

1 otherwise
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MCMC - Metropolis-Hastings algorithm

Given a target quasi-distribution q(Θ):
1 Specify a proposal distribution k(y |x)

2 Choose a starting point Θ i.e. St=0 = Θ; set t = 0
3 Increment t
4 Draw a new state proposal Θ′ ∼ k(Θ′|Θ)
5 Draw a uniform random number u ∈ [0, 1]

6 If u < q(Θ′)k(Θ|Θ′)
q(Θ)k(Θ′|Θ) , set St = Θ′; else setSt = Θ

7 Goto (3)

The art of MCMC is in specifying the proposal distribution k(y |x)
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MCMC - Random Walk Metropolis (example)
Assume that k does not depend on state, but solely on difference
between states i.e.

k(y |x) = K (y − x)

This is the jumping function for a random walk if always accepted.

Assume furthermore, that k is symmetric i.e.

k(y |x) = k(x |y)

This simplifies our acceptance function to

α(y |x) = min

(
q(y)

q(x)
, 1

)

Popular choice: Multivariate Gaussian distribution

k(y |x) ' exp(−1

2
(y − x)TΣ−1(y − x))
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MCMC - Random Walk Metropolis - Log densities

Switching to logarithms:

When implementing MCMC, it is advisable to work with logarithmic
densities instead as multiplications and ratios become sums and
substractions

This is important when dealing with a wide dynamical range to avoid
over-/underflows (but may cause some occurrences of −∞ we have
to deal with)

The acceptance-rejection step then reads:
6 If ln u < ln q(Θ′)− ln q(Θ), set St = Θ′; else setSt = Θ
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MCMC - Random Walk Metropolis (example)
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MCMC - Convergence

How long do we have to run MCMC until sampling good
approximation of underlying posterior?

no simply/reliable answer to this key question; absolute convergence
of pdf difficult to quantify/prove

relying on heuristics e.g. to check whether your walker has traversed
the high density reasons at least a couple of times. This implies e.g.
any substantial subset of the chain shows the same post. morph.
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MCMC - Convergence (cont.)

This similarity can be quantified by e.g. determining deviations in
means and variances between subsets

Most important tool is the so-called autocorrelation time τx . It tells
us how many steps it takes for a chain to ensure that samples on both
end of the interval are (virtually) independent; is 2-point statistic,
thus requires significant amount of data to be estimated precisely.

For multiple chains, there is the Gelman-Rubin diagnostic which
compares the variance with a chain with that across chains
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MCMC - Initialisation/Burn-In

Initial state is often randomly chosen, but not from the underlying
posterior, thus may end up in a ”non-typical” place and then
over-samples the region around initial → not good sample of posterior

Ignore/discard initial steps aka burn-in before you do any inference
on the chain(s)
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MCMC - Tuning

The proposal function k can have various parameters to determine
how the MC random-walks through the parameter space

e.g. for the multivariante Gaussian distribution

k(y |x) ' exp(−1

2
(y − x)TΣ−1(y − x))

there are D(D + 1)/2 parameters in the D × D sym.,pos.def.
covariance matrix to be set

Question: How to find the optimal parameters ?
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MCMC - Tuning (Problem 1)

if distribution is too wide, while steps cover parameter space easily,
almost all proposals are rejected
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MCMC - Tuning (Problem 2)

if distribution is too narrow, almost all proposals are accepted, but
full exploration of parameter space takes very long
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MCMC - Tuning (cont.)
Best parameters for proposal function are those that minimize the
autocorrelation time τx

As previously mentioned, τx can be difficult to measure without
significantly huge amounts of data. Instead we can use proxy
statistics:
Acceptance fraction With shrinking step size the acceptance ratio

grows and vice versa. The Goldilock value is roughly
between 0.5 and 0.25. Can be used during the Burn-in
phase to update the parameters if observed acceptance
differs significantly.
You can decompose the D-dim. tuning problem into D
1-dim. problems by updating each model parameter
separately.

Accepted Squared Jump Distance This is the mean squared distance
the walker moves and maximises when the acceptance
rate is reasonable and the step size is large - easy to
measure and well correlated with the autocorrelation
time.
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differs significantly.
You can decompose the D-dim. tuning problem into D
1-dim. problems by updating each model parameter
separately.

Accepted Squared Jump Distance This is the mean squared distance
the walker moves and maximises when the acceptance
rate is reasonable and the step size is large - easy to
measure and well correlated with the autocorrelation
time.JAS (ICG, Portsmouth) An Introduction to MCMC July 24, 2019 39 / 42



MCMC - Final Notes

We saw that MCMC is by construction a fair sampler for our posterior (or
any other) probability, which allows us to integrate over the probability
function (e.g. to calculate the mean or median), but we have to also point
out, what it is not . . .

It is NOT a good search algorithm. Chains are not guaranteed to
find/sample every local maximum, let alone a global one in the whole
parameter space.

It is definitely also NOT a good optimizer i.e. generically samples
will not lie close the maximum of the sampled pdf (gets worse with
higher dimensionality) ⇒ “Best-Fit” value is meaningless.
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Web-/Bibliography

B Hogg et al.,Data Analysis Recipes using MCMC
arXiv:1710.06068

B Leclercq et al., Cosmology: from theory to data, from data to
theory arXiv:1403.1260v3

B Loredo,T., Lectures on Bayesian inference & MCMC
https://astrostatistics.psu.edu/su14/lectures/
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