OBSERVATIONAL COSMOLOGY

MORE EVIDENCE FOR DARK MATTER

DAVID BACON
INSTITUTE OF COSMOLOGY AND GRAVITATION
PORTSMOUTH

COSMIC MICROWAVE BACKGROUND

ROTATION CURVES

- Newtonian gravity
- v is orbital velocity, r is radius, M is interior mass
- For solar system, interior mass is constant
- Can measure the mass interior to r from velocity measurement

GALACTIC ROTATION

CURVES

- We'd like to measure galaxy mass: ie. look sufficiently far out to see v=√GM/r
- But no stars: look at neutral gas
- 21cm emission from small magnetic energy difference between proton spinning parallel or anti-parallel to electron
- At large r, galactic rotation curves are flat
- Implies M grows beyond extent of visible stars

Mass to light for galaxies is typically 2 to 10

DARK MATTER IN CLUSTERS

Virial arguments for galaxies

For self-gravitating system in equilibrium

$$\mathrm{KE}_{\mathrm{avg}} = -\frac{1}{2}\mathrm{GPE}_{\mathrm{avg}}$$

$$\mathrm{KE}_{\mathrm{avg}} = \frac{1}{2}\sum_{i}m_{i}v_{i}^{2} \quad \mathrm{GE}_{\mathrm{avg}} = -\frac{1}{2}\sum_{i}\sum_{j\neq i}\frac{Gm_{i}m_{j}}{r_{ij}}$$
 measure measure

DARK MATTER IN CLUSTERS

Virial arguments for galaxies

For self-gravitating system in equilibrium

$$KE_{avg} = -\frac{1}{2}GPE_{avg}$$

$$\operatorname{KE}_{\operatorname{avg}} = \frac{1}{2} \sum_{i} m_{i} v_{i}^{2} \quad \operatorname{GE}_{\operatorname{avg}} = -\frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{Gm_{i}m_{j}}{r_{ij}}$$

measure

DARK MATTER IN CLUSTERS

ROSAT image

Hydrostatic equilibrium argument for hot gas:

Gas temperature is proportional to v², so can use to estimate total mass

$$rac{kT_g}{\mu m_p} pprox \sigma_r^2,$$
 $T_g pprox 7 imes 10^7 \, \mathrm{K} \left(rac{\sigma_\mathrm{r}}{1000 \, \mathrm{km/s}}
ight)^2$

- Gas plus galaxies accounts for only 15% of observed mass
- Mass to light can be as high as 100 for massive clusters

STRONG LENSING BY CLUSTERS: CLOO24+1654

Optical image of CL0024+1654

Reconstructed mass map for CL0024+1654

Strong-lensing mass reconstruction tend to give mass-to-light ratios of order ~100, consistent with virial estimates

THE BULLET CLUSTER

Chandra observations show that dark matter (from lensing) and galaxies are not in the same place as the hot gas

Explaining these observations is a big challenge for theories without dark matter (e.g. modified gravity theories)

WEAK LENSING

van Uitert et al 11, RCS2

SO WHAT IS DARK MATTER? HIDDEN BARYONS?

- DM cannot be baryonic as this causes problems for nucleosynthesis
- Also CMB/LSS arguments require non-baryonic DM

$$\Omega_b h^2 = 0.02267^{+0.00058}_{-0.00059}$$
 $\Omega_c h^2 = 0.1131 \pm 0.0034$

A NEW PARTICLE?

	at freeze-out	if weakly interacting
hot dark matter (e.g. neutrinos)	relativistic	m < 1 keV
warm dark matter (e.g. sterile neutrino)	quasi-relativistic	1 keV < m < 10 keV
cold dark matter (e.g. WIMP)	non-relativistic	m > 10 keV

HDM cannot account for small scale structures.

LIMITS ON NEUTRINO MASS (HOT DARK MATTER)

$$\Omega_{\nu}h^2 = \frac{\sum m_{\nu}}{94 \,\text{eV}}$$

Cosmological constraints

$$\Omega_{\rm v} < 0.2...2 \, {\rm eV}$$

(depends on priors and other assumptions)

Warren et al.

WARM DARK MATTER

- Missing Satellites problem: Many more (~500) satellites in CDM simulations than observed
 - Warm dark matter would suppress formation of satellites
 - Satellites may be too faint or contain only dark matter

COLD DARK MATTER?

- WIMP = weakly interacting massive particle
 - SUSY predicts as lightest super-symmetric particle
 - But SUSY disfavoured by LHC?
- "WIMP miracle" correct abundance requires cross-section which is roughly what's expected for weak scale particle ~ 100 GeV

100 GeV predicts $\Omega_m \sim 0.3$

COLLIDER EXPERIMENTS (LHC)

No ATLAS excesses found yet at 13TeV 3.2fb⁻¹

DIRECT DETECTION

Try to detect ionization and phonons from very cold semiconductors underground

CDMS

CoGeNT

CONFUSING RESULTS...

INDIRECT DETECTION

Positron excess a hint of DM annihilation or local pulsars?

AXIONS

NB another DM candidate:

Axion - particle introduced to ensure QCD doesn't violate CP symmetry.

Non-relativistic, collisionless, but small mass (10⁻⁵ - 10⁻³ eV)

Exciting possibilities for lab tests! e.g. ADMX, detect axions converting into microwaves in presence of magnetic field.

SUMMARY

Dark matter seems to be there (a lot).

Can't be baryonic (CMB, nucleosynthesis)

Not hot (LSS)

Not weird gravity?? (Bullet cluster)

Don't see cold particle (LHC)

Hmm.