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FLRW metric

» 4D spacetime split into 1+3

» Friedmann-Lemaitre-Robertson-Walker (FLRW) line
element:
ds? = —c2dt? + a*(t)dX>

» time + homogeneous and isotropic space
» dynamical scale factor, a(t), where ag = 1 today
» maximally-symmetric 3-space, curvature K

2

dX? =
1— Kr?

+r? (d6? + sin® 0d¢?)
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! FRW cosmology
preferred coordinates
for homogeneous and
isotropic space

preferred space+time split in FRW cosmology
breaks symmetry of Einstein’s theory



FLRW metric

» 4D spacetime split into 1+3

» Friedmann-Lemaitre-Robertson-Walker (FLRW) line
element:
ds? = —c2dt? + a*(t)dX>

» time + homogeneous and isotropic space
» dynamical scale factor, a(t), where ag = 1 today
» maximally-symmetric 3-space, curvature K

2

dX? =
1— Kr?

+r? (d6? + sin® 0d¢?)

» alternative (conformal) time coordinate, d7 = c dt/a:

ds? = a(7) [—d7'2 + dXz]
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FLRW metric

» 4D spacetime split into 1+3

» Friedmann-Lemaitre-Robertson-Walker (FLRW) line
element:
ds? = —c2dt? + a*(t)dX>

» time + homogeneous and isotropic space
» dynamical scale factor, a(t), where ag = 1 today
» maximally-symmetric 3-space, curvature K

2

dX? =
1— Kr?

+r? (d6? + sin® 0d¢?)

» alternative (conformal) time coordinate, d7 = c dt/a:

ds? = a(7) [—d7'2 + dXz]

» Henceforth assume K = 0, flat space
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Scalar perturbations Theoretica

cosmology

David Wands

» Scalar quantity, e.g., density at fixed point P is
invariant under change of coordinates

» Split into background (homogeneous) part and a
perturbation (inhomogeneous):

p(t,x) = p(t) + op(t, X)

» expand perturbation order-by-order in a small
parameter, €:

. 1 >
dp(t,x) = edip(t,X) + 55262,0(1‘, +...
> keep only terms at first order in € = linear peturbations

dp(t,X) = ed1p(t,X)



Theoretical

Expanding equations order-by-order syt

» e.g., non-relativistic continuity equation for density David Wands
p(t,X) 5
P e
9P 45 (p¥) =0 1
P15 (o) (1)

Scalar perturbations

expand density and velocity order-by-order
p(t,xX) = p(t) +edip(t,X) + %6252;)(1“,)?) +...
Wt %) — gaw;a+%g@w;m+“.
substitute into Eq. (1)

0 1

7t <ﬁ+ ed1p + 55252p + .. >
- 1

+V. [<ﬁ+ ed1p + 55252/) +.. >

1
X <E51\7+ 56252\74- >:| =0
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Perturbation equations order-by-order syt
David Wands
» collect terms order-by-order in ¢

9
8/0

{(51p+V p(51\7)}

Scalar perturbations

+2€ {at62p+v . ([_)(52\7+251p51\7)} +...=0

» solve order-by-order in e

0 _

ap
251p+cﬁ-51\7 =0
ot

352p+ CV - 627 —2CV - (81p617)

ot



Fourier transform

» Field in real space is an integral over Fourier modes:

> d*k ik.X
5P(f7X):/(27r)350;(t)ek'

» Fourier modes are eigenfunctions of the spatial
Laplacian:

V2 (ei”.;> — )2k

which provide a complete orthonormal basis:

/d3x ehF gika% _ (97)3503) (;1 _ Ez)

» Coefficient in Fourier space is integral over real space:

5p(t) = / B op(t, %) e~ 1%
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Statistical distribution P

David Wands

Fourier transforms

» theory
describes properties of distribution = ensembile,
assumed isotropic
({...) = average over all possible realisations)

» observations
describe one realisation from the distribution



Power spectrum

» defined by the correlation of two modes in Fourier space:

(0pg,0p5,) = (2m)° Py(k1)0® (l?l + l?z)
note: P,(k) only a function of wavenumber k, not

wavevector k, for an isotropic distribution
» Variance in real space: (exercise for reader!)

3. 43, oo
<5p2()_<,)> _ < d k1d6k2 6pl‘(‘ 6PE ei(k1+k2)-)?>
(27.(.) 1 2

d3/? d3/? i o 1L %
B / (217r)6*2 (97, 3z, el t)

d*k
= /(27T)13Pp(k1):/dlnk173p(k1)

» dimensionless power spectrum per log k:

A7 k3
Py(k) = T
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» Bispectrum
<5p;15p/:25p123> = (271')3 B,(ki, k2,3 )53 (/?1 + /?2 + E3)

Power spectrum

Bispectrum is zero for Gaussian perturbations (and for
all odd moments)

> We will take first-order perturbations to be Gaussian:

(01pg, 0195, 01pF,) =0

Second- and higher-order perturbations are
non-Gaussian.

(02pf, 017, 01pF,) # 0
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VeCtor perturbatlons cosmology
> decompose any 3-vector: V = VV() + V() David Wands

> scalar (longitudinal /potential) flow: V x VV({) =0
> vector (transverse/divergence-free) flow: V- V() =0

» Fourier transform
» scalar

Vector perturbations

N d3k s ,-*)?
vE(t,X) = / oy Vé )(t) ol k-

» vector

TV (4 7 d*k SRy 2\ k%
V¢ )(t,x) _/(27T)3 {Vév)(t) -t év)(t)eﬂ}ek.

where & and &; are orthonormal polarisation vectors:

e,;~e,;:

1
1

M2

:1, e,;-e,;:O

M2

kK Sk
transverse to wavevector k:

k-&=k-&=0
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Vector perturbations commology
David Wands

putting it all together U

. d3k (.= s (v 2 v Kz
V(t,x):/(27r)3 LRV () + 6V (0) + BV (1)} F
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Tensor perturbatlons cosmology
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» decompose any 3-tensor:
T =0;C+V;V;S+(1/2)(ViV; + V;V;) + hj
» scalars C and S are longitudinal /potential Tensor perturbations
» vector V; is transverse: V'V, =0
» tensor hj; is transverse and trace-free:
V'hj=Vhj=0,  h =0

1



Theoretical

Tensor perturbatlons cosmology

» Fourier transform: David Wands
. Pk [ ) () D) iR

hU(t’X) = / (27‘1’)3 {hk (t)qkl +hE (t)qlzij } e

where polarisation tensors
q(~) = i(e»eﬂ—é»éﬂ)
k I_/ \/i k I k_] k I k_] Tensor perturbations
) = (et + )
9Gei = /2 ecikj T ekick;

and e, and &, are orthonormal, transverse vectors,
such that (exercise for reader!)

()i () _ ()i _(x) (+)ii (%)
GG =9 q,;u—l, P qu—O
tracefree q(+) = ql(;i)i = 0 and transverse to k:

kiql(;;j) _ kiql(?jj) -0
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Metrlc perturbatlons cosmology

> Split metric into spatially-flat FLRW background and pavid Hancs
inhomogeneous perturbation:
8uv = 8uv + 08uw -
» Background:
Zoo=a>, Boi=0, g;=a%; 2

perturbations

» Perturbation:
(5g00 = 232/4
ogoi = a(ViB-S)
ogy = a(2Co;+2ViVJE + ViFj+ VFi + hy)

» 4 scalars: A,B,C,E
» 2 vectors: S;, F;
> 1 tensor: hj
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Metrlc perturbatlons cosmology

David Wands
» Perturbed line-element including only scalar
perturbations:
ds®> = guvdxt dx”
= a(7) {—(1+2A)d7? +2(8;B)dx'dT Metric

perturbations

+[(1+2C)é; + 2(0;E)]} dx’ dxd

where four scalar perturbations are

> A = lapse perturbation

> 0;B = OB/0x' = shift perturbation

» (C = spatial curvature perturbation

> 0;E = 0°E/0x'0x) = off-diagonal spatial perturbation
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Geometrical interpretation cosmology

» Temporal gauge (time-slicing) in 4D spacetime defines David Wands

a hypersurface orthogonal 4-vector field:

or
NN XX %
normalise such that N,N¥ = —1.

» intrinsic curvature of constant 7 hypersurfaces:
Or-_2v2c
22
» expansion of constant 7 hypersurfaces:

3 /4 1
g==(=(1-A "4 V2
a(a( )+C+3va)

» shear:

UU_(V;VJ'—;V2>J, O':E/—B

» acceleration:
a; = V,A

Geometrical interpretation



! FRW cosmology
preferred coordinates
for homogeneous and
isotropic space

preferred space+time split in FRW cosmology
breaks symmetry of Einstein’s theory



! FRW cosmology

X

no unique choice of time (slicing) and space coordinates (threading)
in an inhomogeneous universe

r 4 n f
_ FRW cosmology
+ perturbations

arbitrary gauge (t,x)

: — X

gauge problem: find different perturbations in different gauges
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» Scalar quantity, e.g., density, p|p, at given point P is
invariant .
p(1,X)|p = p(7,X)|p

under first-order (scalar) change of coordinates:

= 74 07(7,X)

= )? + 6(5)((7-, )?) Gauge dependence

Xt N

» but background-perturbation split is gauge-dependent

po(r) +oplp = po(7) +dplp
= dplp = dplp + po(T) — po(7)
= dplp — podT (3)



Theoretical

Linear gauge transformation rules syt

» Coordinate change: David Wands
time-slicing: 7 — 7+ 07(7,X)
spatial-threading: X — X+ Véx(r,X)
» Gauge transformations:
density: 6~p = 0p—ploT
pressure: 5P = 6P —P'or
velocity: ¥/ = v/ +9dx (4) .

including three metric transformations independent of
spatial-threading:

~ a,
lapse: A = A— =61 — o7
a
~ a/
curvature: C = C— —6t1
a

shearr 6=E'—-B = o—6r (5)



! FRW cosmology

X

synchronous+comoving with pressureless cold dark matter
time-slicing orthogonal to comoving worldlines

A AN

FRW cosmology
+ perturbations

comoving-Lagrangian
q coordinates (7,9)




Conformal Newtonian/Longitudinal gauge Theorctical
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David Wands

> pick a gauge to completely fix the coordinates
» for example: longitudinal gauge (zero-shear time-slices):

» set 0 — 6 = 0 which requires a transform 7 = o
» we then have

: 0 ~ /
density: ¢ = L 5=5-t
p p o al intery
©
. . . . . ) Conformal o
including two gauge-invariant metric perturbations: Sty Cer
/ Ec

a HJHwk,ﬁm, vari
lapse: A — V=A-—0-0
a

/ Einstein equations in an
curvature: C — & =C— a;o, (7) e



! FRW cosmology

X

Poisson = conformal Newtonian = longitudinal gauge
hypersurface-orthogonal 4-vector field n is shear-free

AN n f
FRW cosmology

+ perturbations

| — Poisson gauge
coordinates (¢’ ,x)




! FRW cosmology

X

time-slicing orthogonal to comoving worldlines
Spatial threading is same as Poisson gauge (Eulerian, not Lagrangian)

n

FRW cosmology
+ perturbations

total-matter
coordinates (7,x)

VAN



Standard Newtonian+Gaussian initial fields

Gaussian primordial metric fluctuations {(x) from inflation + linear
Einstein-Boltzmann code (e.g., CMBfast, CAMB, CLASS)

Gaussian initial Newtonian potential (I) — (3/5)<

: Gaussian initial matter density using Poisson equation
2 2 —
VD = 4nGa“po

( Gaussian initial displacement = =

V.V

< Newtonian N-body simulations §
V20 = ArGa*pd §

0+ V.(1+0)7=0]
U+ HE+ (0.V)T= -V




Uniform-density gauge

> pick a gauge to completely fix the coordinates
» for example: uniform-density time-slices:

» set §p — dp = 0 which requires a transform o7 = dp/p’
» we then have

density: dp — 57) =0
pressure: 6P — 6P = 6Pnq = 6P — 25p (8)

where ¢2 = P’/p’ = adiabatic sound speed.
» gauge-invariant metric perturbation:
/
asd
curvature: C—>(=C— ——?
anp

> more generally, for any fluid with density p, (7, X) we
can identify the curvature perturbation on
uniform-a-density time-slices:
a' op
Ca = C - ,a
a p

Theoretical
cosmology

David Wands

Uniform-density gauge



Equating gauge-invariant variables

» Gauge-invariant variables are not unique, and they are
not independent
» for example, the curvature on uniform-density
time-slices can be written in terms of the longitudinal
gauge metric potential and density contrast:
1

A (FEARE

for example, for radiation and non-relativistic matter:

1
C,\{Eq)—‘—z(sfy

1
m=P+ =0,
¢ +3
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multiple component cosmology

P Local energy conservation

Po = —3(1+ wa)(a'/a)pa
where w, = P, /pq leads to

1 0pa
a = C i ——
‘ 3(1+ wa) pa

» curvature perturbation, C, on dp, = 0 time-slices
> density perturbation, §ps/pa, on C = 0 time-slices
» conserved for barotropic fluids, Py (ps), on large scales.

Theoretical
cosmology

David Wands



Theoretical

multiple component cosmology R i

David Wands
» Primordial plasma (e.g., at epoch of primordial

nucleosynthesis when T ~ 1 MeV)
» photons, baryons, neutrinos, cold dark matter 4 dark
energy?
> total curvature/dimensionless density perturbation:

14+ w,
(=2 T

conserved on large scales for adiabatic perturbations
» isocurvature/relative entropy perturbation:

a=3 (Ca -G )
Y Equating gauge-invariant
variables

> for example, matter-isocurvature perturbation:

):5&_?&

Sm=3((m—
(G = ) = 2 20

conserved on large scales



Cosmological perturbations on large scales

adiabatic perturbations ea, sl M | on, ~0
ng n}, ng
— perturb along the background trajectory
ylk
x_¥_sr
X oy

e.g, single-field perturbations along slow-roll attractor

adiabatic perturbations stay adiabatic

entropy perturbations

perturb off the background trajectory

ox 0y

. i .
Xy

e.g., baryon-photon isocurvature perturbation:

v

v



Conserved cosmological
perturbatlons Lyth & Wands 2003

time 4 t,

space
For every quantity, X, that obeys a local conservation equation

dx .
—=y(x) , eg. p,=—-3Hp
N y(x) g P P

where dN = Hdt is the locally-defined expansion along comoving worldlines

there is a conserved perturbation OX

S =oN=—"

y(x)
where perturbation 0 X = x, - Xg is a evaluated on hypersurfaces
separated by uniform expansion AN=Alna



examples:

(i) total energy conservation: dp
——=H 'p=-3(p+P)
AN P P
for perfect fluid / adiabatic perturbations, P=P(p)
o)
6, = P conserved
3(p+P)

(ii) energy conservation for non-interacting perfect fluids:

H™ ' p,==-3(p,+P) where b,=P(p) = ¢ = P;

3(p;+F)
(iii) conserved particle/quantum numbers (e.g., B, B-L,...)
4. on.
H 1nl. =-3n, —=> ({, =—
3n.

l



microwave background signatures:

C=A2 x + B2x
~ - .‘..\V : -\‘ —
" adiabatic CDM isocurvature
Bucher, Moodley & Turok 00 ng=1

Trotta, Riazuelo & Durrer 01

Amendola, Gordon, Wands & Sasaki ‘01
best-fit to Boomerang, Maxima & DASI
B/A = 0.3, cosA = +1, ng=0.8
o, = 0.02, o4, =0.1, Q, =0.7

+ 2 A B COSA x

‘correlation
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Theoretical

Einstein equations in an arbitrary gauge R i

. . David Wands
Evolution equations

trace and trace-free spatial part of Einstein equations:
2
C" +2HC —HA — QH +H})A = —4nGa° (5/3 + 3v2n> ,

o +2Ho -A-C 81 Ga’M ,

Energy+momentum constraints
time-time and time-space components:

3H(C' — HA) — V*(C—Ho) = 4rGa*sp,
C'—HA = 4rGa*(p+ P)(v+B).
Energy+momentum conservation
Fluid continuity and Euler equations:
5p' +3H(Sp+0P) +3(p+ P)C' + (p+ P)VX (v + E') = 0, s

1 2
’ 2.2 2 _
(v+B) +(1 3CS)H(v+B)+A+p+P(§P+3V |‘|> 0.



Constraint equations in conformal Newtonian
gauge

A=V, B=0 ,C=¢, E=0

Energy and momentum constraint equations

3H(P — HV) — V20 = 4xGa%dp,
O —HV = —4nGa’(p+P)V.

eliminate ' — HWV gives Poisson equation:

2
v—2¢ = —4nGép. ,
a

where gauge-invariant comoving energy density (i.e., dp in

v + B = 0 gauge)

dpc =0p+3H(p+ P)V

Theoretical
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Einstein equations in an
arbitrary gauge



Theoretical

Fluid equations in arbitrary gauge R i
Fluid continuity and Euler equations: David Wands

5p' +3H(Sp+0P) +3(p+ P)C' + (p+ P)V?(v + E') 0,

1 2
/ _ 2 L 42
(v+B)+(1 3cs)H(v+B)+A+p+P<5P+3V |‘|>

0.

For zero pressure perturbations (e.g., ACDM)

8p' 4+ 3Mp +3pC' + pV3(v + E') 0,
(v+B)Y +H(v+B)+A

In comoving gauge (v + B =0)
Spl + 3Hdope +3pC. +pV?V = 0,
Ac =

and momentum constraint then reduces to C. = 0. S -
. . arbitrary gauge

In conformal Newtonian gauge (E = B = 0) Euler equation o

becomes

Vi HV+VY = 0.



Recovering Newtonian fluid equations
Changing to density contrast

1)
s=2°
p
we then have for pressureless matter

» Poisson equation for conformal Newtonian potential:
3
V2o = —~H?5,
2
» Continuity equation for comoving density:
5L+ VAV =0
> Euler equation for conformal Newtonian velocity (V = VV):
V' +HV = -VV¥
Coincide exactly to first-order Newtonian perturbation equations

in an expanding cosmology, using W = —® for zero anisotropic
stress.

Theoretical
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Recovering Newtonian flui
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Redshift-space distortions cosmology

David Wands

Continuity equation for comoving density contrast:
5L+ V2V =0

divergence of peculiar velocities, § = V2V, seen in galaxy
redshift surveys

(%) = £2(62)
Important probe of growth of structure given by fog, where
ag is the variance of the matter power spectrum on 8 Mpc
scales (~ 1).

Redshift-space distortions



Theoretical

Second-order equation for ¢ commology
Continuity equation for comoving density contrast: David Wands

SL4+V2V =0
Taking time derivative

5+ V2V =0
plus Euler equation

VI+HY = -V
eliminating V/ and V gives

8! +HIL — VWU =0

Using W = —® and Poisson equation

V20 = —%szc

gives linear second-order differential equation

Redshift-space distortions

5+ Ho. — gﬂ%c =0



Theoretical

GrOWth Of StrUCtU re cosmology
In absence of any pressure perturbations, e.g., ACDM David Wands

3
¥+H&—§H%@:O

Growth of structure is independent of scale in ACDM
cosmology.

k(1) = D+(7)6k0 + D_(T)dk 0

» Growing mode D, (7) normalised so that Dy (7p) =1
today
» Decaying mode D_(7) assumed negligible at late times

» In matter-dominated cosmology (2, = 1) then D1  a
F= dln D+ _
dlna

> In ACDM B N
6/11
f~Qb
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