Theoretical cosmology Cosmological perturbations

David Wands

Institute of Cosmology and Gravitation University of Portsmouth

5th Tah Poe School on Cosmology

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbati :heory

- .

Fourier transforms

Power spectrur

Vector pertu

Tensor perturbat

Metric

perturbation

Geometrical interpretati

uge dependence

ticular gauges

Conformal Newtonian/Longitud

gauge Uniform-density ga

nitorm-density ga nating gange-inva

riables

Einstein equations

Einstein equations in an arbitrary gauge

Recovering Newtonian equations

Redshift-snace distr

ecovering Newton uid equations

Standard model of structure formation

primordial perturbations

in cosmic microwave background

gravitational _____ instability

large-scale structure of our Universe

new observational data offers precision tests of

- cosmological parameters
- the nature of the primordial perturbations

Inflation:

initial false vacuum state drives accelerated expansion zero-point fluctuations yield spectrum of perturbations

References

- Malik and Wands, Phys Rep 475, 1 (2009), arXiv:0809.4944
- ▶ Bardeen, Phys Rev D22, 1882 (1980)
- Kodama and Sasaki, Prog Theor Phys Supp 78, 1 (1984)
- ► Bassett, Tsujikawa and Wands, Rev Mod Phys (2005), astro-ph/0507632

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbation heory

Carlan assessed

Scalar perti

Fourier transfor

Vector perturb

vector perturb

Metric

erturbations

eometrical interpretation

auge dependence

Conformal

Vewtonian/Longitue gauge

> form-density gau ting gauge-invari

Einstein equations

Einstein equations in an

Recovering Newtonian fl

Redshift-space di

Outline

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbation theory

Metric perturbations

Einstein equations

FLRW metric

- ▶ 4D spacetime split into 1+3
- Friedmann-Lemaitre-Robertson-Walker (FLRW) line element:

$$ds^2 = -c^2 dt^2 + a^2(t) dX^2$$

- ▶ time + homogeneous and isotropic space
- dynamical scale factor, a(t), where $a_0 = 1$ today
- ► maximally-symmetric 3-space, curvature *K*

$$dX^{2} = \frac{dr^{2}}{1 - Kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

Theoretical cosmology

David Wands

Homogeneous cosmology

erturbatio

heory

Fourier transforms
Power spectrum

Vector perturbations Tensor perturbations

Metric

erturbations

auge dependence

articular gauges

onformal ewtonian/Longitud auge

Iniform-density gau quating gauge-invar riables

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space distort

Recovering Newtoni Iuid equations

FRW cosmology preferred coordinates for homogeneous and isotropic space

preferred space+time split in FRW cosmology breaks symmetry of Einstein's theory

FI RW metric

- ▶ 4D spacetime split into 1+3
- Friedmann-Lemaitre-Robertson-Walker (FLRW) line element:

$$ds^2 = -c^2 dt^2 + a^2(t) dX^2$$

- ▶ time + homogeneous and isotropic space
- dynamical scale factor, a(t), where $a_0 = 1$ today
- ► maximally-symmetric 3-space, curvature *K*

$$dX^2 = \frac{dr^2}{1 - Kr^2} + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right)$$

▶ alternative (conformal) time coordinate, $d\tau = c dt/a$:

$$ds^2 = a^2(\tau) \left[-d\tau^2 + dX^2 \right]$$

Theoretical cosmology

David Wands

Homogeneous cosmology

erturbation

theory

Power spectrum

ector perturbations

ensor perturbations

Metric

erturbations

Geometrical interpretatior Gauge dependence

articular gauges Conformal

lewtonian/Longit auge

Jniform-density gau quating gauge-invari griables

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

> Redshift-space distortion Recovering Newtonian

FLRW metric

- ▶ 4D spacetime split into 1+3
- Friedmann-Lemaitre-Robertson-Walker (FLRW) line element:

$$ds^2 = -c^2 dt^2 + a^2(t) dX^2$$

- ▶ time + homogeneous and isotropic space
- dynamical scale factor, a(t), where $a_0 = 1$ today
- ► maximally-symmetric 3-space, curvature *K*

$$dX^{2} = \frac{dr^{2}}{1 - Kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

▶ alternative (conformal) time coordinate, $d\tau = c dt/a$:

$$ds^2 = a^2(\tau) \left[-d\tau^2 + dX^2 \right]$$

ightharpoonup Henceforth assume K=0, flat space

Theoretical cosmology

David Wands

Homogeneous cosmology

erturbation

theory

Fourier transforms
Power spectrum

Vector perturbation

Metric

erturbations

Gauge dependence

Particular gauges Conformal

Newtonian/Long gauge

Jniform-density ga quating gauge-inv giables

instein equations

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid equations

> Recovering Newtonian fluid equations

Scalar perturbations

- Scalar quantity, e.g., density at fixed point P is invariant under change of coordinates
- Split into background (homogeneous) part and a perturbation (inhomogeneous):

$$\rho(t, \vec{x}) = \bar{\rho}(t) + \delta \rho(t, \vec{x})$$

expand perturbation order-by-order in a small parameter. ε :

$$\delta \rho(t, \vec{x}) = \varepsilon \delta_1 \rho(t, \vec{x}) + \frac{1}{2} \varepsilon^2 \delta_2 \rho(t, \vec{x}) + \dots$$

 \blacktriangleright keep only terms at first order in $\varepsilon \Rightarrow$ linear peturbations

$$\delta \rho(t, \vec{x}) = \varepsilon \delta_1 \rho(t, \vec{x})$$

Theoretical cosmology

David Wands

Scalar perturbations

Expanding equations order-by-order

e.g., non-relativistic continuity equation for density $\rho(t,\vec{x})$

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0 \tag{1}$$

expand density and velocity order-by-order

$$\rho(t, \vec{x}) = \bar{\rho}(t) + \varepsilon \delta_1 \rho(t, \vec{x}) + \frac{1}{2} \varepsilon^2 \delta_2 \rho(t, \vec{x}) + \dots$$
$$\vec{v}(t, \vec{x}) = \varepsilon \delta_1 \vec{v}(t, \vec{x}) + \frac{1}{2} \varepsilon^2 \delta_2 \vec{v}(t, \vec{x}) + \dots$$

substitute into Eq. (1)

$$\frac{\partial}{\partial t} \left(\bar{\rho} + \varepsilon \delta_1 \rho + \frac{1}{2} \varepsilon^2 \delta_2 \rho + \dots \right)$$

$$+ \vec{\nabla} \cdot \left[\left(\bar{\rho} + \varepsilon \delta_1 \rho + \frac{1}{2} \varepsilon^2 \delta_2 \rho + \dots \right) \right.$$

$$\times \left(\varepsilon \delta_1 \vec{v} + \frac{1}{2} \varepsilon^2 \delta_2 \vec{v} + \dots \right) \right] = 0$$

Theoretical cosmology

David Wands

Scalar perturbations

4 D F 4 D F 4 D F 4 D F

Perturbation equations order-by-order

ightharpoonup collect terms order-by-order in ε

$$\frac{\partial}{\partial t} \bar{\rho}
+\varepsilon \left\{ \frac{\partial}{\partial t} \delta_1 \rho + \vec{\nabla} \cdot (\bar{\rho} \delta_1 \vec{v}) \right\}
+ \frac{1}{2} \varepsilon^2 \left\{ \frac{\partial}{\partial t} \delta_2 \rho + \vec{\nabla} \cdot (\bar{\rho} \delta_2 \vec{v} + 2 \delta_1 \rho \delta_1 \vec{v}) \right\} + \dots = 0$$

> solve order-by-order in ε

$$\frac{\partial}{\partial t} \vec{\rho} = 0 \Rightarrow \vec{\rho} = 0$$

$$\frac{\partial}{\partial t} \delta_1 \rho + C \vec{\nabla} \cdot \delta_1 \vec{v} = 0$$

$$\frac{\partial}{\partial t} \delta_2 \rho + C \vec{\nabla} \cdot \delta_2 \vec{v} = -2C \vec{\nabla} \cdot (\delta_1 \rho \, \delta_1 \vec{v})$$

Theoretical cosmology

David Wands

Homogeneous cosmology

theory

Scalar perturbations

Power spectrum

Tensor perturbations

Metric

conturbations

Geometrical interpretation Gauge dependence

articular gauges Conformal

Newtonian/Longitudin gauge Uniform-density gauge

Uniform-density gauge Equating gauge-invarian variables

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space

Recovering Newtonian

Fourier transform

► Field in real space is an integral over Fourier modes:

$$\delta \rho(t, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \, \delta \rho_{\vec{k}}(t) \, e^{i\vec{k}.\vec{x}}$$

► Fourier modes are eigenfunctions of the spatial Laplacian:

$$\nabla^2 \left(e^{i\vec{k}.\vec{x}} \right) = -k^2 e^{i\vec{k}.\vec{x}}$$

which provide a complete orthonormal basis:

$$\int d^3x \, e^{i\vec{k}_1 \cdot \vec{x}} \, e^{i\vec{k}_2 \cdot \vec{x}} = (2\pi)^3 \delta^{(3)} \left(\vec{k}_1 - \vec{k}_2 \right)$$

► Coefficient in Fourier space is integral over real space:

$$\delta
ho_{\vec{k}}(t) = \int d^3x \, \delta
ho(t, \vec{x}) \, e^{-i \vec{k}.\vec{x}}$$

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbation heory

Scalar perturbation

Fourier transforms

Vector perturbations
Tensor perturbations

Vetric

perturbations
Commercial interpre

Gauge dependence

Conformal Newtonian/Long

> auge Jniform-density gauge quating gauge-invarian

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space dist

Recovering Newtonian luid equations

Statistical distribution

- theory describes properties of distribution = ensemble, assumed isotropic (⟨...⟩ = average over all possible realisations)
- observations describe one realisation from the distribution

Theoretical cosmology

David Wands

Homogeneous cosmology

theory

Scalar perturbations

Fourier transforms

Vector perturbations

1etric

perturbations

Geometrical interpretation

auge dependence

articular gauges Conformal

onformal lewtonian/Longitudi auge

Uniform-density ga

instein equation

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space

ecovering Newtoni uid equations

Power spectrum

defined by the correlation of two modes in Fourier space:

$$\langle \delta \rho_{\vec{k}_1} \delta \rho_{\vec{k}_2} \rangle = (2\pi)^3 P_{\rho}(k_1) \delta^3 \left(\vec{k}_1 + \vec{k}_2 \right)$$

note: $P_{\rho}(k)$ only a function of wavenumber k, not wavevector \vec{k} , for an isotropic distribution

▶ Variance in real space: (exercise for reader!)

$$\begin{split} \langle \delta \rho^{2}(\vec{x}) \rangle &= \langle \int \frac{d^{3}\vec{k}_{1}d^{3}\vec{k}_{2}}{(2\pi)^{6}} \delta \rho_{\vec{k}_{1}} \delta \rho_{\vec{k}_{2}} e^{i(\vec{k}_{1} + \vec{k}_{2}) \cdot \vec{x}} \rangle \\ &= \int \frac{d^{3}\vec{k}_{1}d^{3}\vec{k}_{2}}{(2\pi)^{6}} \langle \delta \rho_{\vec{k}_{1}} \delta \rho_{\vec{k}_{2}} \rangle e^{i(\vec{k}_{1} + \vec{k}_{2}) \cdot \vec{x}} \\ &= \int \frac{d^{3}\vec{k}_{1}}{(2\pi)^{3}} P_{\rho}(k_{1}) = \int d \ln k_{1} \mathcal{P}_{\rho}(k_{1}) \end{split}$$

ightharpoonup dimensionless power spectrum per log k:

$$\mathcal{P}_{
ho}(k) = rac{4\pi k^3}{(2\pi)^3} P_{
ho}(k)$$

Theoretical cosmology

David Wands

Homogeneous cosmology

heory

Scalar perturbations

Power spectrum

ector perturbations
ensor perturbations

Metric

perturbation

Gauge dependence Particular gauges

Conformal Newtonian/Lor gauge

> Uniform-density gau Equating gauge-invar

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space distortions
Recovering Newtonian

Higher-order statistics

▶ Bispectrum

$$\langle \delta \rho_{\vec{k}_1} \delta \rho_{\vec{k}_2} \delta \rho_{\vec{k}_3} \rangle = (2\pi)^3 B_{\rho}(k_1, k_{2,3}) \delta^3 \left(\vec{k}_1 + \vec{k}_2 + \vec{k}_3 \right)$$

Bispectrum is zero for *Gaussian* perturbations (and for all odd moments)

▶ We will take *first-order* perturbations to be *Gaussian*:

$$\langle \delta_1 \rho_{\vec{k}_1} \delta_1 \rho_{\vec{k}_2} \delta_1 \rho_{\vec{k}_3} \rangle = 0$$

Second- and higher-order perturbations are non-Gaussian.

$$\langle \delta_2 \rho_{\vec{k}_1} \delta_1 \rho_{\vec{k}_2} \delta_1 \rho_{\vec{k}_3} \rangle \neq 0$$

Theoretical cosmology

David Wands

Homogeneous cosmology

rturbatio eorv

Scalar perturbations

Power spectrum

Vector perturbations

/letric

perturbation

Geometrical interpretation

Sauge dependenci Particular gauges

Conformal

Newtonian/Longi gauge

Uniform-density ga

riables

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space distorated Recovering Newtoni

Vector perturbations

- decompose any 3-vector: $\vec{V} = \vec{\nabla} V^{(s)} + \vec{V}^{(v)}$
 - scalar (longitudinal/potential) flow: $\vec{\nabla} \times \vec{\nabla} V^{(s)} = 0$
 - ightharpoonup vector (transverse/divergence-free) flow: $\vec{
 abla}\cdot\vec{V}^{(
 u)}=0$
- ► Fourier transform
 - scalar

$$V^{(s)}(t,\vec{x}) = \int \frac{d^3k}{(2\pi)^3} V_{\vec{k}}^{(s)}(t) e^{i\vec{k}.\vec{x}}$$

vector

$$ec{V}^{(v)}(t, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left\{ V_{\vec{k}}^{(v)}(t) \vec{e}_{\vec{k}} + \tilde{V}_{\vec{k}}^{(v)}(t) \vec{e}_{\vec{k}} \right\} e^{i\vec{k}.\vec{x}}$$

where $\vec{e}_{\vec{k}}$ and $\vec{\tilde{e}}_{\vec{k}}$ are orthonormal polarisation vectors:

$$\vec{e}_{\vec{k}} \cdot \vec{e}_{\vec{k}} = \vec{\tilde{e}}_{\vec{k}} \cdot \vec{\tilde{e}}_{\vec{k}} = 1, \quad \vec{e}_{\vec{k}} \cdot \vec{\tilde{e}}_{\vec{k}} = 0$$

transverse to wavevector \vec{k} :

$$\vec{k} \cdot \vec{e}_{\vec{k}} = \vec{k} \cdot \vec{\tilde{e}}_{\vec{k}} = 0$$

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbat heory

Scalar perturbations

Power spectrum

Vector perturbations

Tensor perturbations

Metric

perturbatio

Gauge dependence

articular gauges Conformal

Newtonian/Longitudir gauge

Iniform-density gaug quating gauge-invaria riables

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space distortio

Vector perturbations

putting it all together

$$\vec{V}(t,\vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left\{ i\vec{k} \, V_{\vec{k}}^{(s)}(t) + \vec{e}_{\vec{k}} \, V_{\vec{k}}^{(v)}(t) + \vec{\tilde{e}}_{\vec{k}} \, \tilde{V}_{\vec{k}}^{(v)}(t) \right\} e^{i\vec{k}.\vec{x}}$$

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbation theory

Scalar perturbation

Fourier transforms

Power spectrum

Vector perturbations

ensor perturbations

Metric

perturbations

Geometrical interpretati

Sauge dependence

Particular gauges

Conformal

Newtonian/Longitudina gauge

iform-density gaug ating gauge-invaria

nstein equation

Einstein equations in an arbitrary gauge

equations equations

Redshift-space dist

Tensor perturbations

decompose any 3-tensor:

$$T_{ij} = \delta_{ij}C + \nabla_i\nabla_jS + (1/2)(\nabla_iV_j + \nabla_jV_i) + h_{ij}$$

- ► scalars C and S are longitudinal/potential
- vector V_i is transverse: $\nabla^i V_i = 0$
- tensor hii is transverse and trace-free:

$$\nabla^i h_{ij} = \nabla^j h_{ij} = 0 \,, \qquad h^i_i = 0 \label{eq:poisson}$$

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbation Theory

Scalar perturbations

Power spectrum

Tensor perturbations

lotric

perturbation

Geometrical interpreta

uge dependence

ticular gauges

onformal lewtonian/Longitudi auge

niform-density gau uating gauge-invari

Einstein equations

Einstein equations in an arbitrary gauge

Recovering Newtonia equations

Redshift-space distortion

Tensor perturbations

► Fourier transform:

$$h_{ij}(t,\vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left\{ h_{\vec{k}}^{(+)}(t) q_{\vec{k}\,ij}^{(+)} + h_{\vec{k}}^{(\times)}(t) q_{\vec{k}\,ij}^{(\times)} \right\} e^{i\vec{k}.\vec{x}}$$

where polarisation tensors

$$q_{\vec{k}\,ij}^{(+)} = \frac{1}{\sqrt{2}} \left(e_{\vec{k}\,i} e_{\vec{k}\,j} - \tilde{e}_{\vec{k}\,i} \tilde{e}_{\vec{k}\,j} \right) q_{\vec{k}\,ij}^{(\times)} = \frac{1}{\sqrt{2}} \left(e_{\vec{k}\,i} \tilde{e}_{\vec{k}\,j} + \tilde{e}_{\vec{k}\,i} e_{\vec{k}\,j} \right)$$

and $e_{\vec{k}\,i}$ and $\tilde{e}_{\vec{k}\,i}$ are orthonormal, transverse vectors, such that (exercise for reader!)

$$q_{\vec{k}}^{(+)\,ij}q_{\vec{k}\,ij}^{(+)} = q_{\vec{k}}^{(\times)\,ij}q_{\vec{k}\,ij}^{(\times)} = 1\,, \quad q_{\vec{k}}^{(+)\,ij}q_{\vec{k}\,ij}^{(\times)} = 0$$

tracefree $q_{\vec{k},i}^{(+)i} = q_{\vec{k},i}^{(\times)i} = 0$ and transverse to \vec{k} :

$$k^{i}q_{\vec{k}\,ij}^{(+)}=k^{i}q_{\vec{k}\,ij}^{(imes)}=0$$

Theoretical cosmology

David Wands

Homogeneous cosmology

erturbatio neorv

Scalar perturbations

Power spectrum

Tensor perturbations

Vietric

perturbations
Geometrical interpreta

Gauge dependence Particular gauges

Conformal Newtonian/Longitu gauge

Uniform-density gauge Equating gauge-invariant

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid equations

> Redshift-space distortion Recovering Newtonian

Metric perturbations

Split metric into spatially-flat FLRW background and inhomogeneous perturbation:

$$g_{\mu\nu}=ar{g}_{\mu
u}+\delta g_{\mu
u}$$
 .

Background:

$$\bar{g}_{00} = a^2, \quad \bar{g}_{0i} = 0, \quad \bar{g}_{ij} = a^2 \delta_{ij}$$
 (2)

Perturbation:

$$\begin{array}{lcl} \delta g_{00} & = & 2a^2A \\ \delta g_{0i} & = & a^2 \left(\nabla_i B - S_i\right) \\ \delta g_{ij} & = & a^2 \left(2C\delta_{ij} + 2\nabla_i \nabla_j E + \nabla_i F_j + \nabla_j F_i + h_{ij}\right) \end{array}$$

- ▶ 4 scalars: *A*, *B*, *C*, *E*
- \triangleright 2 vectors: S_i, F_i
- ▶ 1 tensor: *h*_{ii}

Theoretical cosmology

David Wands

Homogeneous cosmology

erturbat eorv

Scalar porturba

Fourier transforms
Power spectrum

ector perturbations

Metric perturbations

metrical interpretation

articular gauges

Conformal Newtonian/Long

auge Iniform-density gauge

quating gauge-inva ariables

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid equations

> Redshift-space distortion Recovering Newtonian

fluid equations

Metric perturbations

Perturbed line-element including only scalar perturbations:

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

$$= a^{2}(\tau)\left\{-(1+2A)d\tau^{2} + 2(\partial_{i}B)dx^{i}d\tau + \left[(1+2C)\delta_{ij} + 2(\partial_{ij}E)\right]\right\}dx^{i}dx^{j}$$

where four scalar perturbations are

- ightharpoonup A = lapse perturbation
- $\triangleright \partial_i B = \partial B/\partial x^i = \text{shift perturbation}$
- ightharpoonup C = spatial curvature perturbation
- $ightharpoonup \partial_{ij}E = \partial^2 E/\partial x^i \partial x^j = \text{off-diagonal spatial perturbation}$

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbat heory

Scalar perturbations

ower spectrum

Vector perturbations Tensor perturbations

Metric perturbations

eometrical interpretation

Particular gauge

articular gauge Conformal

lewtonian/Longitudi auge Iniform donsity gaug

Jniform-density gauge quating gauge-invarian

Einstein equations

Einstein equations in an arbitrary gauge

Recovering Newtoni equations

dshift-space distortio

Geometrical interpretation

► Temporal gauge (time-slicing) in 4D spacetime defines a hypersurface orthogonal 4-vector field:

$$N_{\mu} \propto rac{\partial au}{\partial x^{\mu}}$$

normalise such that $N_{\mu}N^{\mu}=-1$.

ightharpoonup intrinsic curvature of constant au hypersurfaces:

$$^{(3)}R = -\frac{4}{a^2}\nabla^2 C$$

ightharpoonup expansion of constant au hypersurfaces:

$$\theta = \frac{3}{a} \left(\frac{a'}{a} (1 - A) + C' + \frac{1}{3} \nabla^2 \sigma \right)$$

shear:

$$\sigma_{ij} = \left(\nabla_i \nabla_j - \frac{1}{3} \nabla^2\right) \sigma \,, \qquad \sigma = E' - B$$

acceleration:

$$a_i = \nabla_i A$$

Theoretical cosmology

David Wands

Homogeneous cosmology

'erturbatioı heory

Scalar perturbations

Fourier transform Power spectrum

Vector perturbations

etric sturbatio

Geometrical interpretation

Gauge dependence

articular gauges

Conformal

wtonian/Longitudii uge

niform-density ga uating gauge-inva

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space distortion

Recovering Newtonian fluid equations

FRW cosmology preferred coordinates for homogeneous and isotropic space

preferred space+time split in FRW cosmology breaks symmetry of Einstein's theory

FRW cosmology

no unique choice of time (slicing) and space coordinates (threading) in an inhomogeneous universe

FRW cosmology + perturbations

arbitrary gauge (t,x)

gauge problem: find different perturbations in different gauges

Gauge dependence

 \triangleright Scalar quantity, e.g., density, $\rho|_P$, at given point P is invariant

$$\rho(\tau, \vec{x})|_P = \tilde{\rho}(\tilde{\tau}, \tilde{\vec{x}})|_P$$

under first-order (scalar) change of coordinates:

$$\tilde{\vec{x}} = \tau + \delta \tau(\tau, \vec{x})$$

$$\tilde{\vec{x}} = \vec{x} + \vec{\nabla} \delta x(\tau, \vec{x})$$

but background-perturbation split is gauge-dependent

$$\rho_{0}(\tau) + \delta \rho|_{P} = \rho_{0}(\tilde{\tau}) + \widetilde{\delta \rho}|_{P}
\Rightarrow \widetilde{\delta \rho}|_{P} = \delta \rho|_{P} + \rho_{0}(\tau) - \rho_{0}(\tilde{\tau})
= \delta \rho|_{P} - \rho'_{0}\delta \tau$$
(3)

Theoretical cosmology

David Wands

Gauge dependence

Linear gauge transformation rules

Coordinate change:

time-slicing:
$$\tilde{\tau} \rightarrow \tau + \delta \tau(\tau, \vec{x})$$
 spatial-threading: $\tilde{\vec{x}} \rightarrow \vec{x} + \vec{\nabla} \delta x(\tau, \vec{x})$

Gauge transformations:

density:
$$\widetilde{\delta\rho} = \delta\rho - \rho'\delta\tau$$

pressure: $\widetilde{\delta P} = \delta P - P'\delta\tau$
velocity: $\widetilde{v}^i = v^i + \partial^i\delta x$ (4)

including three metric transformations independent of spatial-threading:

lapse:
$$\tilde{A} = A - \frac{a'}{a}\delta\tau - \delta\tau'$$

curvature: $\tilde{C} = C - \frac{a'}{a}\delta\tau$

shear: $\tilde{\sigma} = \tilde{E}' - \tilde{B} = \sigma - \delta\tau$ (5)

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbation heory

theory

Scalar perturbation

Power spectrum ector perturbations

Metric

Geometrical interpretation

Gauge dependence

articular gauges

Conformal Newtonian/Longitudin gauge

iform-density gau ating gauge-invar

Einstein equations

einstein equations in an arbitrary gauge Recovering Newtonian fluid equations

> Recovering Newtonian fluid equations

FRW cosmology

synchronous+comoving with pressureless cold dark matter time-slicing orthogonal to comoving worldlines

FRW cosmology + perturbations

comoving-Lagrangian coordinates (*t*,*q*)

Conformal Newtonian/Longitudinal gauge

- pick a gauge to completely fix the coordinates
- ▶ for example: *longitudinal gauge (zero-shear time-slices)*:
 - ightharpoonup set $\sigma
 ightharpoonup \tilde{\sigma} = 0$ which requires a transform $\delta \tau = \sigma$
 - we then have

density:
$$\delta \equiv \frac{\delta \rho}{\rho} \rightarrow \widetilde{\delta} = \delta - \frac{\rho'}{\rho} \sigma$$
 (6)

including two gauge-invariant metric perturbations:

lapse:
$$A \rightarrow \Psi \equiv A - \frac{a'}{a}\sigma - \sigma'$$

curvature: $C \rightarrow \Phi \equiv C - \frac{a'}{a}\sigma$ (7

Theoretical cosmology

David Wands

lomogeneous osmology

erturbati neorv

Scalar perturbations

Ower spectrum

ector perturbations

Metric

erturbations

Geometrical interpretation Gauge dependence

Conformal

Newtonian/Longitudinal gauge

Uniform-density gauge Equating gauge-invariant variables

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space distortions

FRW cosmology

Poisson = conformal Newtonian = longitudinal gauge hypersurface-orthogonal 4-vector field n is shear-free

FRW cosmology + perturbations

Poisson gauge coordinates (t',x)

FRW cosmology

time-slicing orthogonal to comoving worldlines spatial threading is same as Poisson gauge (Eulerian, not Lagrangian)

FRW cosmology + perturbations

total-matter coordinates (t,x)

Standard Newtonian+Gaussian initial fields

Gaussian primordial metric fluctuations $\zeta(x)$ from inflation + linear Einstein-Boltzmann code (e.g., CMBfast, CAMB, CLASS)

Gaussian initial Newtonian potential

$$\Phi = (3/5)\zeta$$

$$\nabla^2 \Phi = 4\pi G a^2 \bar{\rho} \delta$$

Gaussian initial displacement

$$\vec{\nabla} \cdot \vec{\Psi} = -\delta$$

Newtonian N-body simulations

$$\nabla^2 \Phi = 4\pi G a^2 \bar{\rho} \delta$$

$$\dot{\delta} + \vec{\nabla} \cdot ((1+\delta))\vec{v} = 0$$

$$|\dot{ec{v}}+\mathcal{H}ec{v}+(ec{v}.ec{
abla})ec{v}=-ec{
abla}\Phi$$

Uniform-density gauge

- pick a gauge to completely fix the coordinates
- ► for example: *uniform-density time-slices*:
 - set $\delta
 ho o \delta
 ho = 0$ which requires a transform $\delta au = \delta
 ho /
 ho'$
 - we then have

density:
$$\delta \rho \rightarrow \widetilde{\delta \rho} = 0$$

pressure: $\delta P \rightarrow \widetilde{\delta P} = \delta P_{\rm nad} \equiv \delta P - c_s^2 \delta \rho$ (8)

where $c_s^2 = P'/\rho' = \text{adiabatic sound speed}$.

▶ gauge-invariant metric perturbation:

curvature:
$$C \rightarrow \zeta \equiv C - \frac{a'}{a} \frac{\delta \rho}{\rho'}$$

more generally, for any fluid with density $\rho_{\alpha}(\tau, \vec{x})$ we can identify the curvature perturbation on uniform- α -density time-slices:

$$\zeta_{\alpha} \equiv C - \frac{\mathsf{a}'}{\mathsf{a}} \frac{\delta \rho_{\alpha}}{\rho_{\alpha}'}$$

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbation heory

Scalar perturbations

Fourier transform: Power spectrum

Vector perturbation

Metric

perturbations

Geometrical interpretation Gauge dependence

Particular gauges

Conformal

Newtonian/Longitudina gauge

Uniform-density gauge

variables

Einstein equatio

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space distorti

Recovering Newtonian

Equating gauge-invariant variables

- Gauge-invariant variables are not unique, and they are not independent
- ► for example, the curvature on uniform-density time-slices can be written in terms of the longitudinal gauge metric potential and density contrast:

$$\zeta_{lpha} \equiv \Phi + rac{1}{3(1+w_{lpha})}\delta_{lpha}$$

for example, for radiation and non-relativistic matter:

$$\zeta_{\gamma} \equiv \Phi + \frac{1}{4} \delta_{\gamma}$$

$$\zeta_{m} \equiv \Phi + \frac{1}{3} \delta_{m} \tag{9}$$

Theoretical cosmology

David Wands

Homogeneous cosmology

erturbati neorv

Scalar perturbation

Vector perturbat

etric

perturbation

Geometrical interpretation

Particular gauges

Conformal Newtonian/Longitudi gauge

Uniform-density gauge Equating gauge-invariant

variables

instein equation

Einstein equations in an arbitrary gauge
Recovering Newtonian fluid

edshift-space distortion ecovering Newtonian

uid equations

multiple component cosmology

Local energy conservation

$$\rho_{\alpha}' = -3(1+w_{\alpha})(a'/a)\rho_{\alpha}$$

where $w_{\alpha} = P_{\alpha}/\rho_{\alpha}$ leads to

$$\zeta_{\alpha} = C + \frac{1}{3(1+w_{\alpha})} \frac{\delta \rho_{\alpha}}{\rho_{\alpha}}$$

- lacktriangle curvature perturbation, C, on $\delta
 ho_{lpha} = 0$ time-slices
- density perturbation, $\delta \rho_{\alpha}/\rho_{\alpha}$, on C=0 time-slices
- conserved for barotropic fluids, $P_{\alpha}(\rho_{\alpha})$, on large scales.

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbation heorv

Scalar perturbations

Fourier transforms

Vector perturbatio

Tensor perturbat

Metric

perturbations

Geometrical interpretation

Particular gauges

Conformal Newtonian/Long gauge

Jniform-density gauge

Equating gauge-invariant

Einstein equations

Einstein equations in an

arbitrary gauge Recovering Newtonian flu

quations Redshift-space dist

covering Newtonian

multiple component cosmology

- Primordial plasma (e.g., at epoch of primordial nucleosynthesis when $T \approx 1 \text{ MeV}$)
 - photons, baryons, neutrinos, cold dark matter + dark energy?
 - total curvature/dimensionless density perturbation:

$$\zeta = \sum_{\alpha} \frac{1 + w_{\alpha}}{1 + w} \zeta_{\alpha}$$

conserved on large scales for adiabatic perturbations

isocurvature/relative entropy perturbation:

$$S_{\alpha} = 3\left(\zeta_{\alpha} - \zeta_{\gamma}\right)$$

▶ for example, matter-isocurvature perturbation:

$$S_m = 3(\zeta_m - \zeta_\gamma) = \frac{\delta \rho_m}{\rho_m} - \frac{3}{4} \frac{\delta \rho_\gamma}{\rho_\gamma}$$

conserved on large scales

Theoretical cosmology

David Wands

Homogeneous cosmology

erturbations

Carlan a antonibas

Scalar perturbations
Fourier transforms

Power spectrum ector perturbations

Metric

perturbations

Geometrical interpretation

Particular gauges Conformal

Newtonian/Longito gauge

Uniform-density gauge Equating gauge-invariant

variables

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid equations

> Redshift-space distorti Recovering Newtonian

Cosmological perturbations on large scales

adiabatic perturbations

e.g.,
$$\delta \left(\frac{n_{\gamma}}{n_{B}}\right) \propto \frac{\delta n_{\gamma}}{n_{\gamma}} - \frac{\delta n_{B}}{n_{B}} = 0$$

perturb along the background trajectory

$$\frac{\delta x}{\dot{x}} = \frac{\delta y}{\dot{y}} = \delta T$$

- e.g, single-field perturbations along slow-roll attractor
- adiabatic perturbations stay adiabatic

entropy perturbations

perturb off the background trajectory

$$\frac{\delta x}{\dot{x}} \neq \frac{\delta y}{\dot{y}}$$

e.g., baryon-photon isocurvature perturbation:

Conserved cosmological

perturbations

Lyth & Wands 2003

For every quantity, x, that obeys a **local conservation equation**

$$\frac{dx}{dN} = y(x)$$
 , e.g. $\dot{\rho}_m = -3H\rho_m$

where dN = Hdt is the locally-defined expansion along comoving worldlines

there is a conserved perturbation

$$\zeta_x \equiv \delta N = \frac{\delta x}{y(x)}$$

where perturbation $\delta x = x_A - x_B$ is a evaluated on hypersurfaces separated by uniform expansion $\Delta N = \Delta \ln a$

examples:

(i) total energy conservation:

$$\frac{d\rho}{dN} = H^{-1}\dot{\rho} = -3(\rho + P)$$

for perfect fluid / adiabatic perturbations, $P=P(\rho)$

$$\Rightarrow \zeta_{\rho} = \frac{\delta \rho}{3(\rho + P)}$$
 conserved

(ii) energy conservation for non-interacting perfect fluids:

$$H^{-1}\dot{\rho}_i = -3(\rho_i + P_i)$$
 where $P_i = P_i(\rho_i) \Rightarrow \zeta_i = \frac{\delta\rho_i}{3(\rho_i + P_i)}$

(iii) conserved particle/quantum numbers (e.g., B, B-L,...)

$$H^{-1}\dot{n}_i = -3n_i \implies \zeta_i = \frac{\delta n_i}{3n_i}$$

microwave background signatures:

$$C_{I} = A^{2} \times$$
 $+ B^{2} \times$
 $+ 2 A B \cos \Delta \times$

adiabatic

CDM isocurvature

 $C_{I} = A^{2} \times$
 $+ 2 A B \cos \Delta \times$

Bucher, Moodley & Turok '00 $n_S = 1$ Trotta, Riazuelo & Durrer '01

Amendola, Gordon, Wands & Sasaki '01

best-fit to Boomerang, Maxima & DASI

B/A = 0.3,
$$\cos \Delta = +1$$
, $n_S = 0.8$

$$\omega_{\rm b} = 0.02, \ \omega_{\rm cdm} = 0.1, \ \Omega_{\Lambda} = 0.7$$

Portsmouth

- o island city on the south coast of England
- historic home of the Royal Navy
- University of Portsmouth founded 1992
- Institute of Cosmology and Gravitation established in 2002
- 60+ researchers (academic staff, postdoctoral researchers, phd students and visiting researchers)

Portsmouth

o island city on the south coast of England

historic home of the Royal Navy

University of Portsmouth founded 1992

 Institute of Cosmology and Gravitation established in 2002

 60+ researchers (academic staff, postdoctoral researchers, phd students and visiting researchers)

Portsmouth

- island city on the south coast of England 0
- historic home of the Royal Navy 0
- University of Portsmouth founded 1992 \bigcirc
- Institute of Cosmology and Gravitation 0 established in 2002
- 60+ researchers (academic staff, 0 visiting researchers)

Einstein equations in an arbitrary gauge

Evolution equations

trace and trace-free spatial part of Einstein equations:

$$C'' + 2\mathcal{H}C' - \mathcal{H}A' - (2\mathcal{H}' + \mathcal{H}^2)A = -4\pi Ga^2 \left(\delta P + \frac{2}{3}\nabla^2\Pi\right),$$

$$\sigma' + 2\mathcal{H}\sigma - A - C = 8\pi Ga^2\Pi,$$

Energy+momentum constraints

time-time and time-space components:

$$3\mathcal{H}(C'-\mathcal{H}A) - \nabla^2(C-\mathcal{H}\sigma) = 4\pi G a^2 \delta \rho ,$$

 $C'-\mathcal{H}A = 4\pi G a^2 (\rho + P)(v+B) .$

Energy+momentum conservation

Fluid continuity and Euler equations:

$$\delta \rho' + 3\mathcal{H}(\delta \rho + \delta P) + 3(\rho + P)C' + (\rho + P)\nabla^{2}(v + E') = 0$$

$$(v + B)' + (1 - 3c_{s}^{2})\mathcal{H}(v + B) + A + \frac{1}{\rho + P}\left(\delta P + \frac{2}{3}\nabla^{2}\Pi\right) = 0$$

Theoretical cosmology

David Wands

Homogeneous cosmology

erturbation eory

calar perturbations

Vector perturba

Tensor pertur

Metric

erturbations

Geometrical interpretation

articular gauges

Conformal Newtonian/Longitud gauge

Iniform-density gauge quating gauge-invarian

Einstein equations

Einstein equations in an arbitrary gauge

Recovering Newton equations

Redshift-space disto

covering Newton d equations

Constraint equations in conformal Newtonian gauge

$$A=\Psi\,,\quad B=0\quad, C=\Phi\,,\quad E=0$$

Energy and momentum constraint equations

$$3\mathcal{H}(\Phi' - \mathcal{H}\Psi) - \nabla^2 \Phi = 4\pi G a^2 \delta \rho ,$$

$$\Phi' - \mathcal{H}\Psi = -4\pi G a^2 (\rho + P) V .$$

eliminate $\Phi' - \mathcal{H}\Psi$ gives *Poisson equation*:

$$\frac{\nabla^2}{a^2}\Phi = -4\pi G\delta\rho_c \; ,$$

where gauge-invariant comoving energy density (i.e., $\delta \rho$ in v+B=0 gauge)

$$\delta \rho_c \equiv \delta \rho + 3\mathcal{H}(\rho + P)V$$

Theoretical cosmology

David Wands

tomogeneous cosmology

'erturbation heory

Scalar perturbations

Power spectrum

Vector perturbation Tensor perturbation

Metric

perturbation

eometrical interpretation

articular gauges

Conformal Newtonian/Long gauge

Jniform-density gauge quating gauge-invarian

instein equations

Linstelli equations

Einstein equations in an arbitrary gauge

Recovering Newtonia equations

Redshift-space distor

covering Newtonian

Fluid equations in arbitrary gauge

Fluid continuity and Euler equations:

$$\delta\rho' + 3\mathcal{H}(\delta\rho + \delta P) + 3(\rho + P)C' + (\rho + P)\nabla^2(v + E') = 0,$$

$$(v + B)' + (1 - 3c_s^2)\mathcal{H}(v + B) + A + \frac{1}{\rho + P}\left(\delta P + \frac{2}{3}\nabla^2\Pi\right) = 0.$$
Perturbation theory

For zero pressure perturbations (e.g., ACDM)

$$\delta \rho' + 3\mathcal{H}\delta \rho + 3\rho C' + \rho \nabla^2 (v + E') = 0,$$

$$(v + B)' + \mathcal{H}(v + B) + A = 0.$$

In comoving gauge (v + B = 0)

$$\delta \rho_c' + 3\mathcal{H}\delta \rho_c + 3\rho C_c' + \rho \nabla^2 V = 0,$$

$$A_c = 0.$$

and momentum constraint then reduces to $C_c'=0$. In conformal Newtonian gauge (E = B = 0) Euler equation becomes

$$V' + \mathcal{H}V + \Psi = 0.$$

Theoretical cosmology

David Wands

Einstein equations in an arbitrary gauge

Recovering Newtonian fluid equations

Changing to density contrast

$$\delta \equiv \frac{\delta \rho}{\rho}$$

we then have for pressureless matter

▶ Poisson equation for conformal Newtonian potential:

$$\nabla^2 \Phi = -\frac{3}{2} \mathcal{H}^2 \delta_c$$

Continuity equation for comoving density:

$$\delta_c' + \nabla^2 V = 0$$

 \blacktriangleright Euler equation for conformal Newtonian velocity ($\vec{V}=\vec{\nabla}V$):

$$\vec{V}' + \mathcal{H}\vec{V} = -\vec{\nabla}\Psi$$

Coincide exactly to first-order Newtonian perturbation equations in an expanding cosmology, using $\Psi = -\Phi$ for zero anisotropic stress.

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbation heory

Scalar perturb:

Fourier transform

ector perturbation

Metric .

vieti ic perturbati

Geometrical interpreta

Gauge dependence

Conformal Newtonian/Longi

Newtonian/Long gauge

Uniform-density gauge quating gauge-invariant ariables

Einstein equations

arbitrary gauge
Recovering Newtonian fluid

equations

Recovering Newtonian

Redshift-space distortions

Continuity equation for comoving density contrast:

$$\delta_c' + \nabla^2 V = 0$$

divergence of peculiar velocities, $\theta \equiv \nabla^2 V$, seen in galaxy redshift surveys

$$\langle \theta^2 \rangle = f^2 \langle \delta_c^2 \rangle$$

Important probe of growth of structure given by $f\sigma_8$, where σ_8^2 is the variance of the matter power spectrum on 8 Mpc scales (\approx 1).

Theoretical cosmology

David Wands

Homogeneous cosmology

erturbation

theory

Fourier transforms Power spectrum

Vector perturbation

Metric

erturbations

eometrical interpretation

Gauge dependence

Conformal Newtonian/Long

Newtonian/Long gauge

Uniform-density ga quating gauge-inva

notoin oquations

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid

Redshift-space distortions

Recovering Newton fluid equations

Second-order equation for δ

Continuity equation for comoving density contrast:

$$\delta_c' + \nabla^2 V = 0$$

Taking time derivative

$$\delta_c'' + \nabla^2 V' = 0$$

plus Euler equation

$$V' + \mathcal{H}V = -\Psi$$

eliminating V' and V gives

$$\delta_c'' + \mathcal{H}\delta_c' - \nabla^2 \Psi = 0$$

Using $\Psi = -\Phi$ and Poisson equation

$$\nabla^2 \Phi = -\frac{3}{2} \mathcal{H}^2 \delta_c$$

gives linear second-order differential equation

$$\delta_c'' + \mathcal{H}\delta_c' - \frac{3}{2}\mathcal{H}^2\delta_c = 0$$

Theoretical cosmology

David Wands

Homogeneous cosmology

erturbation neory

Scalar perturbati

Fourier transforms

Vector perturbation

Motric

perturba:

eometrical interpretat

uge dependence irticular gauges

Conformal

Newtonian/Lon gauge

Uniform-density g

Einstein equations

arbitrary gauge
Recovering Newtonian fluid

Redshift-space distortions

Recovering Newtor fluid equations

Growth of structure

In absence of any pressure perturbations, e.g., ACDM

$$\delta_c'' + \mathcal{H}\delta_c' - \frac{3}{2}\mathcal{H}^2\delta_c = 0$$

Growth of structure is independent of scale in Λ CDM cosmology.

$$\delta_k(\tau) = D_+(\tau)\delta_{k,0} + D_-(\tau)\tilde{\delta}_{k,0}$$

- Growing mode $D_+(au)$ normalised so that $D_+(au_0)=1$ today
- ▶ Decaying mode $D_{-}(\tau)$ assumed negligible at late times
- lacksquare In matter-dominated cosmology $(\Omega_m=1)$ then $D_+\propto a$

$$f \equiv \frac{d \ln D_+}{d \ln a} = 1$$

In ΛCDM

$$f\simeq\Omega_m^{6/11}$$

Theoretical cosmology

David Wands

Homogeneous cosmology

Perturbat heory

Scalar perturbation

Power spectrum Vector perturbations

Metric

perturbations

Geometrical interpretation

Particular gauges
Conformal

Newtonian/Longitudin gauge Uniform-density gauge

quating gauge-invaria ariables

Einstein equations

Einstein equations in an arbitrary gauge Recovering Newtonian fluid equations

. Redshift-space dist

Recovering Newtonian fluid equations