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1 Introduction

Physicists and astronomers, even very theoretical ones, always want to know if
their theories have any relation to the real universe. At some point they must
compare the predictions of their theory to the observations, and this is where
an understanding of statistics becomes essential.

Given the limited time, I will not be giving rigorous derivations, but will
instead focus on giving an intuitive understanding of the topics. The goal is to
give a general treatment that will provide working knowledge of the subject and
how it is applied.

1.1 Bayesians vs Frequentists

There are two basic approaches to statistics. The Bayesian approach described
below dates back to Bayes and Laplace, but has only really become popular
recently. For most of the last two centuries, statistics has been discussed in
terms of ‘frequentist,’ or orthodox, statistics, which is distilled in the work by
Fisher, Neyman and Pearson.

The key difference between these approaches is the definition of probability.
For a Bayesian, it simply indicates the degree of belief, or plausibility of some-
thing being true. The frequentist approach instead defines the probability of
something as the fraction of times, or long term frequency, that thing will occur
given infinitely many repeated trials. In this approach, one invents estimators

of the quantities of interest; there might be many for a given quantity which
you must choose between given their sampling properties. (Estimator theory
will be the topic of a later chapter.)

Most of the debate between the camps centres on the notion of priors. The
frequentist approach does not have any explicit dependence on priors, and fre-
quentists see the need for these as a weakness of the Bayesian approach. The
Bayesian camp argues that in choosing one particular estimator, you are im-
plicitly making a choice of priors, and that at least in their approach the priors
are made explicit.

In effect, Bayesians and frequentists are asking different questions. A Bayesian
asks, ‘How likely is a given parameter value given the data?’, while a frequentist
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asks, ‘How probable is the data, given certain parameters?’ The good news is
that if the data are good, it doesn’t really matter, both sides should come to
the same conclusions. Unfortunately in cosmology, we are usually at the limits
of what the data are telling us, and in such cases it is important to clearly state
what prior assumptions you are making, or your results will not be reproducible.

Here I will generally take the Bayesian viewpoint, if and when it matters.
I see it as a cleaner, more transparent formalism which mirrors the scientific
method as a whole.

2 Elements of probability theory

Most of statistics reduces down to describing probability distributions, or, given
some theoretical assumptions or hypothesis, using some probability distribution
to infer another. These probability distributions can be on a set of either discrete
or continuous variables, and can be used to describe a range of things, for
example:

• Something which is directly observable, e.g. the CMB temperature in a
certain direction

• A statistic which summarises some observables given certain elementary
assumptions, e.g. a power spectrum

• A parameter which is defined in the context of a particular model, e.g.
the value of the cosmological constant

• The relative probability of a model within a larger class of models.

2.1 Probability and the probability density function

For discrete variables, we assume we have some variable X which can take any
one of a set of discrete possible values, xi. The probability that X takes a
particular value xi is given by the expression PX(xi). This function is assumed
to be always positive take a value between 0 and 1.

For continuous variables, one begins with a variable X which can take a
range of values, which we will assume stretches from negative infinity to positive
infinity. The probability that the variable lies in the range [x, x + dx] is given
by

P(x ≤ X ≤ x+ dx) = fX(x)dx, (1)

where fX(x) is known as the probability distribution function (pdf), or prob-
ability density. Virtually any function can serve as a probability density, as
long as it is positive definite and has a finite integral over the range in ques-
tion. (Sometimes called the probability mass function for discrete variables.) A
closely related function is the cumulative distribution function, defined as the
probability X is less than some value x:

P(X ≤ x) = FX(x) ≡
∫ x

−∞

fX(x′)dx′. (2)

Equivalently, dFX(x) = fX(x)dx.
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2.2 Basic rules of probability

Its essential we establish a few basic rules for dealing with probabilities and
probability distributions. Luckily, we need rather few rules and the ones we
need are fairly intuitive. The first, sometimes called the sum rule, states that if
we add up the probabilities for all the possible outcomes of an observation, it
should be unity. For a discrete example, it means

PX(A) + PX(Ac) = 1, (3)

where I have denoted by A a set of possible values of X, and Ac is the com-
plement of that set, i.e. all the other possibilities. Equivalently, one could have
said ∑

i

PX(xi) = 1, (4)

where the sum goes over all the possible values of X. For the continuous case,
the sum rule can be written as

∫
∞

−∞

fX(x)dx = 1, (5)

or equivalently that FX(∞) = 1.
The second thing we need to do is to formalise the notion of conditional

probability. Suppose that X and Y are possible events, we define the conditional
probability of X given Y , P(X|Y ), is the probability of observing X given that
Y is known to be true. This should be the ratio of the probability both X and
Y are true (P(X,Y )) to the probability that Y is true:

P(X|Y ) = P(X,Y )/P(Y ). (6)

This relation, known as the product rule, we will take as defining conditional
probability.

Two events are said to be independent if the likelihood of one being true does
not depend on whether the other is true, P(X|Y ) = P(X). From the product
rule, this implies P(X,Y ) = P(X)P(Y ).

2.3 Marginalisation and Bayes’ theorem

Marginalisation is a generalisation of the sum rule to the case where more than
one event is being considered. It basically says

P(X) =
∑

i

P(X,Yi) =

∫
dY f(X,Y ), (7)

i.e., if you add up all the joint probabilities of X and Y , including everything
which might happen with Y , you should get the probability of X.

Another essential element of probability theory follows directly from the
product rule. We can use it to relate two different conditional probabilities:

P(X,Y ) = P(X|Y )P(Y ) = P(Y |X)P(X). (8)

From this quickly follows Bayes’ theorem,

P(X|Y ) = P(Y |X)P(X)/P(Y ), (9)

which is the basis of much of what we will talk about below.
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2.4 Bayesian reasoning

Bayes’ theorem gives a basis for reasoning, and evaluating the probability of
a theory given some data. More precisely, it gives us a system for updating
our confidence in some theory given data, so it implicitly contains the whole of
the scientific method. Take the event X above to represent the truth of some
hypothetical model, H, and let event Y represent some observed data D. Then
Bayes’ theorem is transcribed as

P(H|D) = P(D|H)P(H)/P(D). (10)

Its worth describing each of these terms a little. P(H) is called the prior

distribution, the probability we described to a theory based on what we knew
previous to seeing this data. It may be based on earlier data to some extent,
or it may be purely based on some expectations of naturalness in the context
of our theories. Bayes’ theorem relates the prior to the posterior distribution,
P(H|D), which is the probability we should assign to the hypothesis given what
we thought before and the data we see now.

The prior and posterior distributions are related by two factors. P(D|H)
is the likelihood of the hypothesis, or the probability of the data assuming the
hypothesis is correct. P(D) is called the Bayesian evidence, and often it is
ignored as simply a normalisation factor; however, sometimes it plays a key
role, such as when we want to compare very different hypotheses. We will
return to this when we come to the issue of model comparison.

More generally, we can also apply this in the context of parameters of some
assumed model. Suppose we assume the dataset, ~D behaves as some model MA

which has the set of parameters, ~θA. We find the posterior distribution of the
parameters

P(~θA| ~D,MA) = P( ~D|~θA,MA)P(~θA|MA)/P( ~D|MA). (11)

This distribution should be normalised to unity, so that the evidence for this
model

P( ~D|MA) =

∫
dn~θAP( ~D|~θA,MA)P(~θA|MA). (12)

2.5 Updating conclusions with new data

One advantage of the Bayesian method is that it provides a simple means of in-
corporating previous data in the method, via the prior. Imagine we perform two
experiments. In the Bayesian method, we can perform the first and calculate
the posterior distribution based on it and some initial prior assumption; this
posterior then becomes the prior for the second experiment. The final posterior
distribution is identical to what you would have gotten analysing the two exper-
iments together (assuming the measurements are independent and uncorrelated
so that their likelihoods factorise.) That is,

P(θ|D1,D2,M) ∝ P(D1,D2|θ,M)P(θ|M) = P(D2|θ,M)P(D1|θ,M)P(θ|M)

∝ P(D2|θ,M)P(θ|D1,M). (13)

Thus, it is straight forward to combine various independent observations in the
Bayesian approach without having to consider all observations simultaneously.
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2.6 Priors

The necessity of priors is usually what puts people off of the Bayesian method.
These can be subjective, meaning that conclusions can vary from person to
person. One should always be clear on the priors being used to insure that
your results are reproducible. As discussed above, with good data the priors
become irrelevant (unless they were pathological to begin with!) Unfortunately,
in cosmology the data are not always conclusive, so priors cannot always be
ignored. But how does one know what prior or even what parameterisation is
best to use?

The priors are meant to reflect all previous information, excluding the data
at hand. The first place to start is to look for other observational constraints.
It is extremely rare that we are totally ignorant of some physical parameter;
usually we can find some bounds, however weak they may be. Observations are
rarely the first of their kind, so some bounds likely exist on the quantities at
hand. In the absence of any data, theory can and must play an important role.
If there is a model for how a given quantity has arisen, then it can often be used
to help define the prior.

In the absence of either observations and theoretical expectations, one is
forced to make some choice of prior based on the symmetries of the problem. If
one is interested in what are known as location parameters, where the likelihood
is expected to be a function of the difference between the observation and the
parameter (P(D|θ) = g(D − θ), then most often a flat prior is recommended.
For example, trying to determine the mean of a Gaussian, or the position of
a galaxy in a field of view. If instead one is interested in a multiplicative
parameter (called a scale parameter), where instead P(D|σ) = σ−1g(Dσ), it is
more common to use a prior uniform in the logarithm of the parameter (∝ 1/σ,
sometimes called a reciprocal prior.) These parameters are typically positive
definite, such as the variance or rms of a Gaussian distribution. Remember
that for these distributions, one needs to define upper and lower bounds which
requires some physical input; one reasonable choice is to use the limitations of
the experiment itself to set these.

There is a growing literature on finding Bayesian priors which are “objective”
or “non-informative,” or perhaps more accurately one should think of them as
a standard which is to be used when no other prior information is forthcom-
ing. These often should not be formally thought of as priors, as much as a
means of making a reasonable posterior which is minimally influenced by the
prior choice. One proposal is to use a prior, called the Jeffrey’s prior, which
is simply proportional to the square root of the Fisher information. This has
the advantage of being invariant under reparameterisations, and though it often
leads to improper prior distributions, the resulting posterior is usually proper.
This approach seems to work for 1-dimensional distributions, but it is less re-
liable in higher dimensions. A closely related prior, called a “reference prior”,
attempts to maximise the impact of the data on the posterior by maximising
some measure of the divergence between the prior and posterior (though there
is some arbitrariness about what divergence measure to use.) For both this
approach and for the Jeffrey’s prior, the chosen priors depend on the model of
the likelihood, so they are not priors in the usual sense.

Finally, if one really has no clue how to assign the prior, one can also appeal
to information theory. Some statisticians argue the best choice is a prior which
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maximises the entropy of the distribution, where the entropy is defined as

S = −
∫

dxf(x) log

(
f(x)

m(x)

)
, (14)

where m(x) is the measure. A good discussion of such issues can be found in
the book by Jaynes.

3 Describing 1-d distribution functions

We’ll begin with different ways of describing one-dimensional functions. While
we will be primarily concerned with application to probability distributions,
these descriptions are often used in many other contexts. I will initially focus
on continuous distributions, though most of what I say will apply equally well
to discrete distributions, with any integrations replaced by sums.

3.1 Expectations and moments

For any function of X, like θ(X), an expectation value, or mean value, for that
function can be defined given a pdf:

〈θ(X)〉 ≡
∫

∞

−∞

fX(x)θ(x)dx. (15)

One way of describing a pdf is by giving its moments, which are simply the
expectation values of Xn:

µ′

n = 〈Xn〉 =
∫

∞

−∞

fX(x)xndx (16)

The prime denotes a straightforward algebraic moment, rather than a central
moment which will be defined below. For example, we know that since fX(x) is a
probability distribution function and since X must take some value in the range,
it follows that µ′

0 =
∫
∞

−∞
fX(x)dx = 1 always. The mean of the distribution is

first moment, X̄ = µ′

1 =
∫
∞

−∞
fX(x)xdx.

We are more often interested what are called central moments, which are the
moments of the distribution if the mean of the distribution were subtracted off:

µn = 〈(X − X̄)n〉 =
∫

∞

−∞

fX(x)(x− X̄)ndx (17)

As above, µ0 = 1, but in this case µ1 = 0 by definition. The variance of
a distribution (usually denoted σ2) is the second central moment σ2 = µ2 =
〈(X − X̄)2〉 and is a measure of the width of a distribution. σ is sometimes
called the standard deviation or the R.M.S., short for the root mean square of
the distribution.

Other useful quantities are the skewness, γ1, and kurtosis, γ2, of the distri-
bution, which are related to the third and fourth central moments respectively,
each normalised by the appropriate power of the variance. Specifically, these
are defined as:

γ1 ≡ µ3

µ
3/2
2

(18)

γ2 ≡ µ4

µ2
2

− 3 (19)
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These are defined in a way so that they are both zero for a Gaussian distribution,
and are actually ratios of the cumulants (see below.)

In general a central moment is simply related to the algebraic moments
of the same order and below. For example, the variance of a distribution,
µ2 = 〈(X − X̄)2〉 can be shown to be µ2 = µ′

2 − (µ′

1)
2. (QUESTION: Express

µ3 in terms of µ′

1, µ
′

2, µ
′

3.)

3.2 The characteristic function

One very useful function is called the characteristic function, defined as

φX(t) ≡ 〈eitX〉 =
∫

∞

−∞

fX(x)eitxdx =

∞∑

r=0

(it)r

r!
〈Xr〉. (20)

This is effectively the Fourier transform of fX(x) and can be easily inverted,

fX(x) =
1

2π

∫
∞

−∞

φx(t)e
−itxdt. (21)

One nice thing about the characteristic function is that it is easy to use it to
generate moments of a pdf:

µ′

n = i−n(
d

dt
)nφX(t)|t=0 (22)

The central moments can be generated similarly by including a factor which
removes the mean of the distribution:

µn = i−n(
d

dt
)ne−itX̄φX(t)|t=0. (23)

Often we want to evaluate the distribution function of a sum of two variables,
each of which has their own pdf; the result requires a convolution of their pdf’s.
Another nice feature of the characteristic function is that in Fourier space,
convolutions in real space become simple products:

φX+Y (t) = φX(t)φY (t) (24)

(QUESTION: Use this feature to show that the sum of two Gaussians is also
Gaussian and find the resulting variance.)

The characteristic function is closely related to the moment generating func-

tion, which is defined as the Laplace transform rather than the Fourier trans-
form, of the distribution function. That is,

MX(t) ≡ 〈etX〉 =
∫

∞

−∞

fX(x)etxdx. (25)

Many of the properties of the characteristic function apply also to the moment
generating function.
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3.3 Cumulants and connected moments

Related to the characteristic function is the cumulant generating function:

KX(t) ≡ lnφX(t) ≡
∞∑

r=0

κr
(it)r

r!
. (26)

Here we have defined the cumulants, κn, which are also called the connected
(or reduced) moments of the distribution. The cumulants are related to the
cumulant distribution function in the same way as the moments are related to
the characteristic function:

κn = i−n(
d

dt
)nKX(t)|t=0. (27)

Cumulants are clearly related to the ordinary moments of the distribution.
The ’reduced’ label relates to the fact that higher order moments are generated
by the existence of lower order ones. The cumulants are what are left over
from a moment when the effects of the lower moments are subtracted off. For
example, consider distribution with zero mean distribution variance σ2. It will
have a fourth order moment, µ4, part of which arises from the variance which
is 3σ4, so the resulting cumulant is κ4 = µ4 − 3σ4. (The factor of three arises
from the different ways two pairs can be made from four variables.) Note that
this is why the kurtosis is defined as it is.

PICTURES A LA BERNARDEAU ET AL.
(QUESTION: Show that for a Gaussian distribution, all cumulants higher

than κ2 vanish.)
This leads directly to Wick’s theorem below: since the Gaussian distribution

has no higher cumulants, all higher moments arise from the variance.

4 Some useful distributions

4.1 Flat and reciprocal distributions

The simplest distribution to consider is the flat, or uniform distribution. Un-
fortunately, it suffers from not being normalisable, so some limits must be in-
troduced. For example, if we choose the limits to be a and b, then the uniform
distribution is fX(x) = 1/(b− a) when x is between a and b and is zero other-
wise. This distribution has mean (a+ b)/2 and variance (b− a)2/12. It is often
used as a prior for ‘location’ kinds of variables.

For the uniform prior, the probability that X lies in a range dx is propor-
tional to the size of the range, P(x ≤ X ≤ x + dx) ∝ dx. Another simple
distribution, called the reciprocal distribution, has the probability proportional
to the logarithmic interval; that is, P(x < X < x + dx) ∝ dx/x. This type of
distribution is used for ‘scale’ kinds of variables, such as proportionality con-
stants, which are often multiplicative factors. Like the flat prior, the reciprocal
prior is not well behaved without some limits. With the same choice of limits
as above, the Jeffreys’ distribution is fX(x) = 1/x ln(b/a) when x is between a
and b and is zero otherwise and its mean is (b− a)/ ln(b/a).

8



4.2 Gaussian distribution

The most commonly encountered distribution, and in many ways the best be-
haved, is called the Gaussian, or normal, distribution. The Gaussian distribu-
tion is

fX(x) =
1

(2π)
1
2σ

e−
1
2
(x−X̄)2/σ2

. (28)

It has mean X̄ and variance σ2, and its characteristic function also takes a
Gaussian form:

φX(t) = e−
1
2
t2σ2+itX̄ (29)

(It’s worth understanding how this is derived, as Gaussian integrals often arise
in probability theory.) The Gaussian has no higher cumulants beyond κ1 and
κ2, which are just given by the mean and the variance respectively.

In some sense the Gaussian is most generic distribution. The Central Limit

theorem shows that if you consider the sum of a large number of identically
distributed independent variables, its distribution will approach a Gaussian as
the the number of variables grows larger. This is independent of the distribution
function of the variables. (Assuming the distribution isn’t too pathological, and
has well defined mean and variance.)

4.3 χ
2 distribution

The χ2 distribution is the distribution expected from the sum of the square of
a number of Gaussianly distributed variables. The number of such variables is
called the number of degrees of freedom, p. The χ2 distribution is

fX(x, p) =
1

Γ(p/2)2p/2
x(p/2)−1e−x/2. (30)

It has mean p and variance 2p. Its characteristic function is given by,

φX(t, p) = (1− 2it)−p/2. (31)

Note that as you increase the number of degrees of freedom, the distribution
begins to look more and more like a Gaussian, as predicted by the Central Limit
theorem.

Often, under the assumption of Gaussian errors, a ‘goodness of fit’ statistic
called the χ2 statistic is quoted for a theoretical fit to a set of data, defined as

χ2 =
N∑

i=1

(yi − g(xi))
2/σ2

i , (32)

where, the data are [xi, yi], with y errors σi, and model for the data given by the
function g(x). This should be distributed as a χ2 with the number of degrees
of freedom given by p = N −M , where N is the number of data points and M
is the number of parameters in the model. (This is because a model with the
same number of parameters as there are data points can usually fit the data
exactly, without any residuals, so χ2 = 0.)

Sometimes, the ‘reduced χ2’ value is given instead, defined as

χ2
red = χ2/(N −M). (33)
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This is defined so that its expected value for a good model of the data is 1.
Values of χ2

red much smaller than 1 suggest that the error bars of the data were
over estimated. Values of χ2

red much higher than 1 could either indicate an
underestimation of the error bars, or that you have a poor model for the data
and should be looking for a better one. Sometimes however, you might just be
unlucky, and you might have to live with a high χ2

red until you get more data
or can think of a better model.

Note that the definition of the χ2 statistic given above implicitly assumes
that there are no correlations between the error estimates of the various mea-
surements. The more general expression is

χ2 =
∑

i,j

(yi − g(xi))C
−1
ij (yj − g(xj)), (34)

where Cij is the error covariance matrix defined below. When the error estimates
are uncorrelated, Cij is diagonal with Cii = σ2

i , so the expression trivially
reduces to the one above.

4.4 Discrete distributions

Binomial distribution The first discrete distribution is called the binomial
distribution. This distribution often occurs if one has a experiment which can
take one of two values (‘success’ or ‘failure’), such as flipping a coin (which is
not necessarily a fair coin.) The distribution is given by:

PX(x, p, n) =
n!

x!(n− x)!
px(1− p)n−x, (35)

where x can take integer values between 0 and n, and p is a probability between
0 and 1. If we take the chance of success of a single trial to be p, then the
binomial distribution gives the chances of seeing x successes in n trials. The
mean of this distribution is np, and its variance is np(1−p). One application of
the binomial distribution would be if you are trying to estimate the probability
of a galaxy being a particular type given some finite sample of galaxies.

Poisson distribution The Poisson distribution is a very generic discrete dis-
tribution which arises in a wide number of physics and astronomy contexts. For
example, if you are given the average density of galaxies, what is the number
you actually observe on a given patch? If you ignore correlations and assume
the galaxies are randomly laid down, then the observed number should obey a
Poisson distribution about the expected number (that is, the density*area).

The Poisson distribution is

PX(x, λ) =
1

x!
e−λλx, (36)

where x = 0, 1, 2, 3, . . . and λ is the number expected on average. Thus, the
mean is λ, but λ is also the variance of the distribution. If one is trying to
estimate the density of sources given that you’ve observed N of them on a
patch of sky of area A, the estimator is given as N/A with error

√
N/A.

The Poisson distribution from fairly few assumptions about the nature of
the data. The central assumption is the independence of the events, i.e., the
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probability of observing an event should be independent of what was seen pre-
viously. It also can be derived as the limit of a binomial distribution in the limit
as n → ∞ and where λ = pn is fixed.

4.5 Other distributions

There are a large number of other distributions commonly occurring in the
statistical literature: Cauchy, Gamma, exponential, lognormal, student-t, etc.
These are related to those above in various extreme limits and while occasionally
helpful, do not come up as often as those above. I just want to mention some
of the more useful ones here.

Cauchy distribution One interesting distribution I want to mention is the
Cauchy distribution, which is notable for its pathological properties. It comes up
rarely, but it illustrates some reasons to be cautious. The Cauchy distribution
is

fX(x, α, σ) =
σ

π(σ2 + (x− α)2)
. (37)

What is notable about the Cauchy distribution is that its mean and variance are
undefined. Thus, one must be cautious about applying things like the Central
Limit theorem to such distributions. (See the lighthouse problem in the book
by Sivia for a simple case where the Cauchy distribution arises.)

Student t distribution The Student t distribution, or t distribution, can
arise in a Bayesian context, though its more commonly seen in frequentist statis-
tics.

fT (t, ν) =
Γ( ν+1

2 )√
νπΓ( ν2 )

(
1 +

t2

ν

)−
ν+1

2

. (38)

This distribution looks similar to a Gaussian, but with broader tails. It arises
when trying to infer how far the true mean of a sample is from the sample
mean (assuming a Gaussian distribution), after marginalising over an unknown
variance (assuming a Jeffrey’s prior on the variance and a flat prior on mean.)

Exponential distribution The exponential distribution is defined for posi-
tive arguments (x ≥ 0):

fX(x, λ) = λe−λx (39)

It has mean λ−1 and variance λ−2 and occurs naturally in the lengths of times
between events in Poisson processes (e.g. radioactive decay.)

Lognormal distribution The lognormal distribution is also defined for pos-
itive arguments (x ≥ 0):

fX(x, µ, σ) =
1

(2π)
1
2xσ

e−
1
2
(ln x−X̄)2/σ2

. (40)
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If a variable, y, has a normal distribution, then the distribution of x = ey

is lognormal. Its mean is eµ+
1
2
σ2

, and its variance is (eσ
2 − 1)e2µ+σ2

. The
lognormal distribution is sometimes used to model the one point matter density
distribution.

5 Multi-variate distributions

Thus far we have been focusing on one dimensional distributions, but all the
concepts carry over directly to higher dimensional distribution functions. In this
case, the one dimensional variableX is generalised into a multi-dimensional data
vector, e.g., X = (X1, X2, · · ·XN ). It may be the case that the distributions
are continuous in some directions and discrete in others. Expectations and
marginalizations generalise into multi-dimensional integrations or sums, or a
combination of the two.

5.1 Describing an arbitrary distribution

Bayesian reasoning provides a direct route to the posterior information, which
contains all we know about the parameters at hand; but describing this distri-
bution is not always easy, particularly for large dimensional spaces.

A starting point is finding the parameters where the posterior distribution
peaks. However, it must be remembered that the distribution may easily be
bimodal or multimodal, meaning that it has more than one local maximum. If
the peaks are of comparable amplitude, you must be very careful.

In one or two dimensions, one can usually plot the full distribution function.
Even so, you often want to summarise it with a few numbers. Typical is to
give one or two sigma (68% or 95%) confidence ranges. Even here there is some
ambiguity, e.g. for a 1-d confidence range, you could either define it as the
region where the probability exceeds some threshold, or such that there is equal
probability of being above or below the range. Alternatively, if you are trying
to give an upper or lower limit, you might give a one sided range.

Beyond two dimensions, one must look at different ways to summarise the
data. Most typical is either to look at moments of the distribution, or to find
the curvature matrix around the peak. In directions where the curvature is
high, the peak is sharply defined and the corresponding error bars are small.
For flat directions, the parameters are poorly constrained and often correspond
to parameter degeneracies.

For example, one can consider finding the eigenvectors of the curvature ma-
trix and ordering them according to their eigenvalues. The eigenvectors corre-
spond to linear combinations of the parameters which are independent of each
other, at least around the peak. Some combinations will be well constrained, but
those with small eigenvalues will be poorly constrained and indicate degenera-
cies. (Of course this presumes some metric for the space to compare curvature
in different directions.)

One can also consider lower dimensional slices or projections of the data.
To obtain correct lower dimensional distributions, one should marginalise, pro-
jecting the distributions down all other dimensions. Sometimes however, one
considers simply taking slices through the peak of the distribution, assuming
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that one somehow fixes the other parameters. These two approaches can give
vastly different answers if the errors are correlated.

5.1.1 A cautionary note

Since it can be difficult to keep track of the full distribution functions, so often
people resort to keeping a few moments as summary statistics. (This is partic-
ularly true when the parameter space gets very large.) For example, sometimes
just the mean and the variance of a distribution are kept, and thenceforth the
distribution is treated as Gaussian. While this is often a reasonable approxi-
mation, it can lead to very unphysical distributions. A common example is the
estimation of the variance of a distribution, such as a power spectrum. The vari-
ance is a positive definite function, and if the underlying statistics are Gaussian,
then the variance distribution will typically be of a positive definite χ2 form.
With many degrees of freedom, a Gaussian is a good approximation to the χ2

form. However, with only a few degrees of freedom, the χ2 is very non-Gaussian.
A Gaussian with the same mean and variance will typically have a substantial
tail into non-physical negative values and lead to non-physical results.

5.2 Moments

The discussion of moments in one dimension carries over to multiple dimensions,
except now there are an array of new moments generated by combining different
variables. That is, not only does one have moments such as 〈Xn

1 〉 and 〈Xn
2 〉, but

you also have possibilities like 〈Xn
1 X

m
2 〉. The mean becomes an N dimensional

vector with elements X̄i = 〈Xi〉, where N is the dimension of the probability
space.

In addition, the variance is generalised into what is known as a covariance
matrix. The covariance matrix is defined as

Cij ≡ 〈(Xi − X̄i)(Xj − X̄j)〉. (41)

(This is also sometimes called σ2
ij .) This matrix is clearly symmetric, but while

the diagonal entries must be non-negative, off-diagonal entries may be negative,
and if this is the case the two variables are said to be anti-correlated.

The covariance of the two variables cannot be arbitrarily large, but is limited
by the fact that two variables cannot be more correlated than one variable is
with itself. This result is summarised in what is called the Cauchy-Schwarz
inequality

|〈XiXj〉| ≤ 〈X2
i 〉1/2〈X2

j 〉1/2, (42)

which itself is a special case of an arbitrary dimensional generalisation called
Hölder’s inequality. The inequality becomes an equality only in the special case
where the variables are simply linearly related.

Characteristic functions can also be generalised to higher dimensions, except
now every variable Xi must have its own counterpart ti, so it also becomes a
vector t. Thus,

φX(t) ≡ 〈eit·X〉 =
∫

∞

−∞

fX(x)eit·xdNx. (43)
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The moments are generated as you might expect, for example,

〈XiXj〉 = i−2 d2

dtidtj
φX(t)|t=0. (44)

5.3 Multi-variate Gaussian distribution

The space of multi-variate distributions is very large; even if the variables are
independent, one can still consider all the possible products of the one dimen-
sional distributions discussed above. Here, I just want to demonstrate a simple
distribution for which the variables are not independent.

The multi-variant Gaussian looks like,

fX(x) =
[
(2π)N det |C̃|

]
−

1
2

exp

[
−1

2
(x− X̄)T C̃−1(x− X̄)

]
, (45)

where C̃ is just shorthand for the covariance matrix defined above, and X̄ is
the mean of the distribution. This distribution is often used to approximate
more complicated distributions. The characteristic function for multi-variate
Gaussian is given by the generalisation of the one dimensional result,

φX(t) = e−
1
2
tT C̃t+it·X̄; (46)

this can be useful for marginalising over distributions.
Even if the distribution is non-Gaussian, it can still be useful to make a

Gaussian approximation to it. If we know the position of the peak of an arbitrary
distribution, we can always expand the log of the distribution in a Taylor series,

ln fX(xp + δx) = ln fX(xp) +
∑

i

∂ ln fX(x)

∂xi

∣∣∣∣
x=xp

δxi

+
1

2

∑

ij

∂2 ln fX(x)

∂xi∂xj

∣∣∣∣
x=xp

δxiδxj + · · · (47)

Cutting off at the third term leads to a Gaussian approximation. The first
term shows how high the peak of the function is. If we evaluate about the

peak of the likelihood, then the linear terms are zero. −∂2 ln fX(x)
∂xi∂xj

is sometimes

called the curvature matrix for the parameters or the Hessian. For a Gaussian
distribution, the curvature matrix is simply the inverse of the correlation matrix
(C̃−1) and the peak corresponds to the mean of the distribution.

5.3.1 Moments of a Gaussian

As mentioned above, all the connected moments of the Gaussian distribution
above the second ones are zero. All the information about the distribution is
contained in the correlation function (assuming we work in coordinates where
the mean is zero.) It follows that any higher order moments of the Gaussian
distribution can be written in terms of the correlation function alone.

Precisely how this is done is described in Wick’s (or Isserlis’) theorem. By
symmetry, all odd higher order central moments are zero. All even moments
can be generated by adding all possible permutations of pairs; that is,

〈XiXkXlXk · · ·XpXq〉 = 〈XiXj〉〈XkXl〉 · · · 〈XpXq〉+ permutations. (48)

14



For example, the three point moment 〈XiXkXl〉 = 0, while the general four
point moment is given by

〈XiXkXlXk〉 = 〈XiXj〉〈XkXl〉+ 〈XiXk〉〈XjXl〉+ 〈XiXl〉〈XjXk〉. (49)

In general, if one is interested in 2n-point moments, there are (2n)!/2nn! per-
mutation terms.

Deriving the moments Wick’s theorem follows from taking derivatives of
the characteristic function, i.e.

〈XiXk · · ·XpXq〉 = i−n ∂

∂ti

∂

∂tj
· · · ∂

∂tp

∂

∂tq
e−

1
2
tT C̃t|t=0. (50)

Each application of the derivative generates a polynomial in components of t
multiplied times the Gaussian factor; however, only the final constants in the
final polynomial survive setting t = 0. For odd moments, the polynomial will
be odd, leaving nothing when t = 0. For even moments, the constants in the
polynomial arise when half the derivatives act on the prefactor and half act on
the exponential. This automatically generates the permutations of pairs. For
example,

〈X1X2X3X4〉 =
∂

∂t1

∂

∂t2

∂

∂t3
(−C̃4iti)e

−
1
2
tT C̃t|t=0

=
∂

∂t1

∂

∂t2
(−C̃43 + C̃4itiC̃3jtj)e

−
1
2
tT C̃t|t=0

=
∂

∂t1
(C̃43C̃2iti + C̃42C̃3iti + C̃32C̃4iti − C̃4itiC̃3jtjC̃2ktk)e

−
1
2
tT C̃t|t=0

= C̃43C̃21 + C̃42C̃31 + C̃32C̃41. (51)

5.3.2 Marginalization of Gaussian distributions

Marginalisation over a subset of variables is straight forward for Gaussian distri-
butions using the characteristic function. For characteristic functions, marginal-
isation over a variable is equivalent to setting its reciprocal t variable to zero.
Thus, the covariance matrix elements for the remaining variables is unchanged,
and the covariance matrix is replaced by a subset, or partition, of the original
matrix.

On the other hand, the inverse covariance matrix is dramatically changed;
however, it can be found using the partition method for inverting matrices. That
is, suppose we know the full inverse covariance matrix, then we can partition it
as

C̃−1 =

(
P̃ Q̃

R̃ S̃

)
(52)

where P̃ and S̃ are p × p and s × s square matrices, while Q̃ and R̃ are p × s
and s × p matrices respectively. We can find the p × p inverse matrix after
marginalisation over the s variables to be,

D̃−1 = P̃ − Q̃S̃−1R̃. (53)
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Thus, we can get the new inverse correlation matrix only having to invert the
submatrix describing the parameters we are marginalising over. This is quite
useful when marginalising over a single parameter.

Sometimes, rather than marginalising, we might decide instead to fix some
parameters to particular values, effectively looking at a slice through the prob-
ability density. In this case it is the inverse covariance elements which are fixed,
while the covariance matrix changes. However, the same trick using the parti-
tion method can be used, with C̃ replacing C̃−1 above. Note that if the values
chosen for the slices differ from their mean values, this can lead to a shift in the
mean of the remaining variables if cross correlations exist.

5.4 Principal component analysis

Principal component analysis tries to find combinations of the parameters which
are independent and well constrained; this is done by finding the eigenmodes
of either the correlation or inverse correlation matrix (or the Fisher matrix,
which is the projected inverse correlation matrix.) One begins by solving for a
normalised eigenvector basis. (The covariance and inverse covariance matrices
share eigenvectors, though their eigen values are inverted.) From the normalised
eigenvectors, wi we can construct a rotation matrix W = (w1,w2, · · ·wn),
where WTW = 1. In the eigen mode basis, the covariance matrix is diagonal,

D = WTCW (54)

with values given by the eigenvalues of C, and the eigenvectors are typically
ranked in order of their eigenvalues. Whether the large or small eigenvalues are
most interesting depends on the problem one wants to solve.

If one is trying to represent known data with principal components, the most
interesting modes are those with large variance because most of the amplitudes
will lie in these directions. One can usually do a very good job of representing
the data using just the modes where the variance is seen to be largest. Thus,
PCA approaches can be a very efficient means of compressing the data.

On the other hand, if one is interested in understanding what combinations
of data are or will be well constrained, then it is the smallest variances which
are the most interesting. Large variances will correspond to combinations where
the constraints are flat, which correspond to parameter degeneracies. Through
PCA approaches, one can learn precisely what a given kind of observation will
tell you. (Clearly, if one is working instead with the inverse correlation or Fisher
matrix, the eigenvalues reflect the curvature of the probability space, and well
constrained modes correspond to large curvature modes.)

This method is perhaps most interesting when the parameters are of the
same type, such as in non-parametric models. (After other parameters have
been marginalised out perhaps.) Non-parametric models generally means pa-
rameterising functions by some kind of binning or expansion, rather than tying
them to parameters of a specific underlying model. The term nonparametric
is somewhat a mis-nomer; it does not imply that such models completely lack
parameters but that the number and nature of the parameters are flexible and
not fixed in advance.
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5.5 Changing variables

Often one has a known distribution in terms of some variables, x, and one
wishes to find the distribution of some other variables u = g(x). Assuming this
transformation of variables is one-to-one, this can be done by finding the inverse
transformation, x = h(u). It is straight forward to show,

fU(u) = fX(h(u))|J |. (55)

Here J is the Jacobian of the transformation, defined as the determinant of a
matrix of partial derivatives, that is,

J = det

(
∂hi

∂uj

)
. (56)

We can use this to derive the fact that the distribution function for X + Y
is given by the convolution of the distribution functions of X and Y . If X and
Y are independent (see below), we can write their combined distribution as the
product of their individual distributions:

fX,Y (x, y) = fX(x)fY (y). (57)

We now make the change variables from X,Y to U = X + Y, V = Y . Inverting
this transformation, we have X = U −V and Y = V . The Jacobian in this case
looks like

J =

∣∣∣∣
1 −1
0 1

∣∣∣∣ , (58)

so the determinant of the Jacobian is unity. Substituting this into the above
expression and integrating over the possible values of V gives

fU (u) =

∫
dvfU,V (u, v) =

∫
dvfX(u− v)fY (v). (59)

This proves the earlier statement that the distribution function for the sum of
two independent variables is just the convolution of their individual distribu-
tions.

Another example is to derive the χ2 distribution from the Gaussian distribu-
tion. That is, supposing X is Gaussianly distributed with unit variance, what
is the distribution for X2? We can find this by making the transformation from
X to U = X2. To ensure transformation is one to one, we will assume that X
is positive definite and double the usual probability density to keep the total
probability integral unity. Solving for x = u1/2, we can find the Jacobian is
J = u−1/2/2. Thus the χ2 distribution with one degree of freedom is:

fU (u) = fX(x = u1/2)|J | = u−1/2

√
2π

e−u/2. (60)

QUESTION: Derive the χ2 distribution for 2 and 3 degrees of freedom. That
is, if X,Y and Z are Gaussianly distributed with zero mean and unit variance,
find the distribution functions for X2 + Y 2 and X2 + Y 2 + Z2.

Similar arguments can be used to show that if you add two independent Pois-
son distributed numbers with means θ and λ, you obtain a Poisson distributed
number with mean θ + λ.
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6 Estimator theory

Since orthodox statistics still dominates most of science, it is important to un-
derstand how the frequentist approach works in practise. A key concept in this
approach is the notion of an estimator, which in fact is any function of a sample.
That is, any statistic can be an estimator. The goal of this approach is to find
statistics of samples which will provide good estimates of the underlying pa-
rameters of the distribution. Thus this approach is also referred to as sampling

theory.

6.1 Kinds of estimators

There are many ways of finding estimators. For example, in the method of

moments, you measure the lowest k moments of a given sample, where k is the
number of parameters of the model. You also can determine the expectation
of these moments for a set of parameters, and these relations can be inverted
to give the parameters in terms of the expected moments. Estimators for the
parameters are found by evaluating these functions substituting the measured
moments.

There is nothing really special about the use of moments in this technique.
Any set of k statistics could have been used in the same way to find estimators
of the parameters. Thus, the family of possible estimators is infinite.

Another popular technique is the maximum likelihood estimator (MLE),
which attempts to find the parameters for which the likelihood is highest; that
is, it finds the parameters for which the data would be most likely to be ob-
served. This is closely related to the Bayesian approach, except it ignores any
prior knowledge.

6.2 Evaluating estimators

There are arbitrary many ways of constructing estimators, so how does one
choose between them? Some criteria have been suggested which I will quickly
go through here.

The first question is whether the estimator is biased. Suppose you have a
statistic W which is an estimator for the parameter θ. The bias of the statistic
is given by b = 〈W 〉 − θ. Usually, we prefer to consider unbiased estimators,
though sometimes biased estimators can have advantages.

Another measure of the quality of an estimator is the mean squared error
(MSE), defined as 〈(W − θ)2〉. It is easy to show that the MSE is related to
both the variance of the estimator and the bias of the estimator,

〈(W − θ)2〉 = 〈(W − 〈W 〉)2〉+ (〈W 〉 − θ)2 = var(W ) + b2. (61)

For an estimator to have small MSE, it must have small variability (precise)
and have small bias (good accuracy). The choice of the MSE isn’t unique; we
could have used any increasing function of the absolute distance |W − θ| as a
measure of the quality of the estimator.
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6.3 Example: estimating mean and variance

Suppose you have many samples from a Gaussian distribution and are trying to
determine the mean and variance of the distribution. Assume the underlying
values are given by µ and σ2. The standard estimator of the mean is

X̄ =
1

N

N∑

i=1

xi, (62)

which is unbiased since 〈X̄〉 = µ. The MSE of this estimator is σ2/N , the same
as the variance of the estimator.

There are two estimators to consider for the variance. The standard one is

S2 =
1

N − 1

N∑

i=1

(xi − X̄)2. (63)

It is straightforward to show that this is unbiased, and has MSE of 2σ4/(N−1).
However, the maximum likelihood estimator for the variance is

σ̂2 =
1

N

N∑

i=1

(xi − X̄)2, (64)

which is biased. However, despite the bias, it has MSE of (2N −1)σ4/N2 which
is smaller than that of S2. Thus, by trading off bias for a smaller variance, the
MSE is improved. Thus, a biased estimator isn’t always a bad thing.

QUESTION: Show σ̂2 is the maximum likelihood estimator, and derive the
MSE for it and for S2.

QUESTION: Measurements of the CMB power spectrum come down to 2ℓ+1
samples from a Gaussian distribution with zero mean. Estimate the percent
uncertainty in the power (variance) as a function of ℓ using the MLE defined
above. This is known as cosmic variance.

6.4 The Cramer-Rao bound

With the notions of bias and MSE, we can search for the best estimator for a
particular parameter. Unfortunately, there is not a prescribed way of finding
the best estimator, but we can at least figure out how good an estimator is
compared to how good it could possibly be.

If we restrict attention to unbiased estimators, then the MSE is given by
the variance of the estimator. We can then use the Cauchy-Schwarz inequality
to derive a bound on how small the variance could be. This is known as the
Cramer-Rao bound, and is given by,

〈(W − 〈W 〉)2〉 ≥
〈(

∂

∂θ
ln fX(x|θ)

)2
〉

−1

. (65)

The right hand side is the inverse of the Fisher information. The bound for
biased estimators is modified by a factor of (∂〈W 〉/∂θ)2 on the right hand side,
and the equality holds only when θ is Gaussian distributed (shown below.)
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This generalises for multi-dimensional parameter estimation. For a large
family of distributions, it can be shown that

Fab ≡
〈(

∂

∂θa
ln fX(x|θ)

)(
∂

∂θb
ln f(x|θ)

)〉
= −

〈
∂2

∂θa∂θb
ln fX(x|θ)

〉
. (66)

This is defined to be the Fisher information matrix. Formally in estimator
theory, fX(x|θ) is the likelihood function, rather than the full posterior distri-
bution. The Fisher matrix is useful for making predictions for what a proposed
experiment will tell us about the underlying theory and it is simply the expec-
tation of the curvature matrix, where the expectation denotes an averaging over
data consistent with a given model. Thus, the Fisher matrix is defined for a
particular theory and is independent of any actual data.

The Fisher matrix is useful because it allows us to place a lower bound on
the derived parameter errors resulting from an experiment. In particular, if
all the parameters are fixed but one, then its error is bounded by σ2

i ≥ 1/Fii.
If we marginalise over the other parameters, σ2

i ≥ (F−1)ii. These limits are
the same as what we found above for the Gaussian case, where the bound is
saturated. However, it must be realised that the Fisher matrix approach only
gives lower bounds. Real experiments must deal with potential non-Gaussianity
and possible systematic errors, so the resulting error bounds will rarely achieve
the predictions of the Fisher matrix approach.

6.4.1 Deriving the Cramer-Rao bound

Let us briefly go through the derivation of the Cramer-Rao bound in the one
dimensional case where we have a single estimator, W (x), for the parameter θ.
It is helpful to define a new quantity, V ≡ ∂ ln fX(x|θ)/∂θ. This quantity has
zero expectation:

〈V 〉 =

∫
dNxfX(x|θ) ∂

∂θ
ln fX(x|θ) =

∫
dNx

∂

∂θ
fX(x|θ)

=
∂

∂θ

∫
dNxfX(x|θ) = ∂

∂θ
1 = 0. (67)

Here we have used the fact that the probability density is normalised to unity.
We next calculate the covariance of W and V (here for simplicity we assume

that W is and unbiased estimator for θ, 〈W 〉 = θ); the covariance is

〈(W − θ)V 〉 = 〈WV 〉 =
∫

dNxfX(x|θ)W (x)
∂

∂θ
ln fX(x|θ)

=

∫
dNxW (x)

∂

∂θ
fX(x|θ) = ∂

∂θ

∫
dNxW (x)fX(x|θ)

=
∂

∂θ
〈W 〉 = ∂

∂θ
θ = 1. (68)

We can think of the space of functions on x as a vector space, where the scalar
product is defined by the two point expectation value. Since the probability is
positive definite, it follows that the two point moment of any non-zero function
is positive, and basically can be used to define a scalar magnitude ||g(x)|| ≡
〈g(x)2〉1/2. Given this, it is straight forward to derive the Cauchy-Schwarz
inequality,

〈g(x)h(x)〉2 ≤ 〈g(x)2〉〈h(x)2〉. (69)
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As in the usual vector case, the bound is saturated only when the functions
are linearly proportional to one another. We can apply this to the functions
W (x)− θ and V (x) to find

〈(W (x)− θ)V (x)〉2 ≤ 〈(W (x)− θ)2〉〈V (x)2〉. (70)

Combining this with the calculation of the covariance, we derive the Cramer-Rao
bound

〈(W (x)− θ)2〉 ≥ 1/〈V (x)2〉 (71)

where

〈V (x)2〉 = 〈( ∂

∂θ
ln fX(x|θ))2〉 (72)

is the Fisher Information.
We can take a further derivative of 〈V (x)〉, which we know to be zero. From

this we see,

∂

∂θ
〈V (x)〉 = 0 =

∂

∂θ

∫
dNxfX(x|θ) ∂

∂θ
ln fX(x|θ) (73)

The derivative yields two terms which must be equal and opposite,

〈( ∂

∂θ
ln fX(x|θ))2〉 = −〈 ∂2

∂θ2
ln fX(x|θ)〉 (74)

which provides the alternative form for the Fisher Information.

When is the bound saturated? It is interesting to know when Cramer-
Rao bound is saturated; this is generally when the probability distribution of the
parameter θ is Gaussian, which can be inferred from the discussion above. The
Cauchy-Schwarz inequality is saturated when the functions are linearly related,
V = a(W − θ), implying

a(W (x)− θ) =
∂

∂θ
ln fX(x|θ) (75)

which can be integrated to find,

ln fX(x|θ) = a(−θ2/2 +W (x)θ) + C. (76)

Taking the exponential of both sides, we can see that fX(x|θ) must be Gaussian
in the parameter θ (and peaking at θ = W (x)) if the Cramer-Rao bound is
saturated.

6.4.2 Fisher matrix for Gaussian likelihoods

The most common application of the Fisher matrix is when the probability of
the data is Gaussianly distributed around some mean vector µ and with some
covariance matrix C̃. Either µ or C̃ may in principle depend on the parameters
θ. Recall for a Gaussian distribution,

ln fX(x|θ) = −1

2
(x− µ)T C̃−1(x− µ)− 1

2
ln det C̃ − N

2
ln(2π). (77)
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Let us first examine the case where the covariance is fixed and only the mean
value µ depends on the parameters θ, which is often the case when one’s error
bars are determined solely by the measurement apparatus. In this case, the
derivative with respect to a single parameter is given by

∂

∂θa
ln fX(x|θ) = −∂µT

∂θa
C̃−1(µ− x) (78)

remembering that C̃ and C̃−1 are symmetric matrices, so that xT C̃−1 = C̃−1x

We can then evaluate the Fisher matrix,

Fab =

〈
∂µT

∂θa
C̃−1(µ− x)

∂µT

∂θb
C̃−1(µ− x)

〉
(79)

This in principle is the product of two scalars, each of which is a linear combi-
nation of components of the vector µ− x. Rearranging and recalling that the
expectation of 〈(µ− x)i(µ− x)j〉 = C̃ij we find that

Fab =
∂µT

∂θa
C̃−1 ∂µ

∂θb
. (80)

(If you have trouble seeing this, it helps to write all the indices explictly.)

Linear regression example We can use this to estimate errors which would
result from a simple linear regression. Suppose we have a set of observations x,y
where the errors on the independent variable x are negligible, and the errors on
the dependent variable are assumed to be uniform uncorrelated errors, C̃ij =
σ2δij . Further, let us assume that there is a model with a linear relationship
between the variables, y = ax + b and our goal is to understand the expected
errors on the parameters a and b. We evaluate the above expression assuming
the mean values µ = ax+b. (Note that x now refers to the independent variable,
and y takes the place of the data variable from above.) We can calculate
the Fisher matrix to be, Faa = N/σ2, Fbb = Σix

2
i /σ

2 and Fbb = Σixi/σ
2.

Inverting the matrix, we find σ2
aa = σ2Σix

2
i /(NΣix

2
i − (Σixi)

2) and σ2
bb =

Nσ2/(NΣix
2
i−(Σixi)

2). These match the expected errors seen for the maximum
likelihood estimators seen in standard regression results.

The other alternative, where the mean is fixed and the covariance depends on
theory parameters, arises all the time in analysing the statistics of cosmological
fields, such as the density field or the temperature of the CMB. In this case,

∂

∂θa
ln fX(x|θ) =

1

2
xi

(
C̃−1 ∂C̃

∂θa
C̃−1

)

ij

xj −
1

2
C̃−1

ij

∂C̃

∂θa
|ji

=
1

2
(xixj − C̃ij)

(
C̃−1 ∂C̃

∂θa
C̃−1

)

ji

(81)

where I used the relation ∂C̃−1

∂θa
= −C̃−1 ∂C̃

∂θa
C̃−1 and Jacobi’s formula, ∂ det C̃

∂θa
=

det C̃ Tr
(
C̃−1 ∂C̃

∂θa

)
. Note that when the covariance is changing, it is important

to include the normalisation determinant term.
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We now are in a position to calculate the Fisher matrix,

Fab =
1

4

〈
(xixj − C̃ij)

(
C̃−1 ∂C̃

∂θa
C̃−1

)

ji

(xkxl − C̃kl)

(
C̃−1 ∂C̃

∂θb
C̃−1

)

lk

〉
.

(82)
Again, this is a product of two scalar terms, but they become mixed when the
expectation values are applied. Using Wick’s theorem for quartic moments, we
find things simplify dramatically,

Fab =
1

2
Tr

[
C̃−1 ∂C̃

∂θa
C̃−1 ∂C̃

∂θb

]
. (83)

Example Let us consider the problem of estimating the variance of a number
of uncorrelated measurements with zero mean. The model parameter is the vari-
ance σ2, and the model for the covariance is simply C̃ij = σ2δij . Thus, C̃−1 =

σ−2δij and
∂C̃ij

∂σ2 = δij , making the Fisher information F = σ−4/2Trδ = N/2σ4.
This means that the smallest error in an unbiased estimator for the variance is
2σ4/N , which should be compared to the results seen for the MSE of S2 seen
above. (However in that case the mean was assumed to be unknown; were it
assumed to be zero, there would be exact agreement between the approaches.)

For the general case, where both the mean and variance depend on theory
parameters, the Fisher matrix is the sum of these two terms:

Fab =
∂µT

∂θa
C̃−1 ∂µ

∂θb
+

1

2
Tr

[
C̃−1 ∂C̃

∂θa
C̃−1 ∂C̃

∂θb

]
. (84)

(Its hard to think of an example where both dependences are there, but they
must exist.)

Note that these expressions do not depend on the basis in which the observ-
ables and their correlations are calculated. In practise, we often choose a basis
where this is easy to evaluate, for example working in Fourier space or spheri-
cal harmonic space where the correlations are diagonal, and the Fisher matrix
becomes a simple sum of independent terms. Formally this diagonal property
requires measurements over the whole space (e.g. over the full sky); however,
often the partial coverage of the volume is put in simply by scaling the informa-
tion by a simple factor, such as the fraction of the sky over which measurements
exist. While this may not be exact, it should usually give a reasonable answer,
given the aim is to forecast.

7 Applications of the Bayesian method

It is worth going through a few basic examples to demonstrate the Bayesian
approach. In order to show analytical solutions, here we focus on Gaussian
distributions; hopefully, these should help provide intuition for more complex
cases.
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7.1 Template fitting

One common question is pulling a weak signal out of noisy data, where one has
an idea for what the signal looks like (a template), but no idea of its amplitude.
This is essentially the equivalent to fitting for the slope of a data set, where you
are looking for a signal in the data which is proportional to the independent
coordinate. Template fitting is a common problem in astronomy, e.g. finding
weak gravitational wave signals in noisy data, or searching for non-Gaussianity
in noisy measurements of the three point moment.

Suppose we have many correlated measurements of some observable y which
are subject to some noise or other source of covariance. Thus, our data model
is y = bx + n. What is the best estimate of b given the data and an error
covariance matrix 〈ninj〉 = Cij?

The first step is to examine the likelihood function, or the probability of
observing the data given a particular value of b. If the errors are Gaussian (a
common assumption), then the likelihood is simply:

L(y|b) = 1

(2π)N/2|C|1/2 exp

[
−1

2
(y − bx)TC−1(y − bx)

]
. (85)

If the prior is uniform over a wide range of b, the posterior distribution of b is
simply proportional to the likelihood, which also happens to be Gaussian in b.
The posterior distribution for b peaks where lnL peaks, which we can determine
by finding where the derivative with respect to b is zero. (This is known as the
maximum likelihood value, so we will denote it as bml.) We can solve for it by,

∂ lnL
∂b

∣∣∣∣
b=bml

= xTC−1(y − bmlx) = 0. (86)

This has the solution that bml = (xTC−1y)/(xTC−1x). Similarly, the curvature
of the likelihood can be found by taking another derivative which allows us to
find the variance, σ2

ml = (xTC−1x)−1.
The maximum likelihood estimates are good so long as the data are much

more informative than the prior on b. When they are comparable, both need to
be kept to find the final posterior solution. This generically will not be solvable
analytically, but if we consider a Gaussian prior on b, then we can do it in
this case. Suppose our prior is Gaussian with mean bpr and variance σ2

pr. It
is straightforward to show that with this prior, the posterior is Gaussian with
mean

bpost =
bmlσ

2
pr + bprσ

2
ml

σ2
pr + σ2

ml

(87)

and variance

σ2
post =

σ2
mlσ

2
pr

σ2
ml + σ2

pr

. (88)

These have precisely the behaviour we expect: when the prior data is weak, its
variance will be large, and the posterior values reduce to the maximum likelihood
values. Similarly, when the priors are very informative compared to the data,
the posterior values are little changed from the prior values.

QUESTION - derive the above results for the posterior distribution.

24



7.2 Wiener filtering

Sometimes one is interested in trying to reconstruct the best estimate of a signal
which has been measured in the presence of noise. Given the expected power
spectra of the signal and the noise, it is possible to construct an optimal estimate
of the signal, by applying what is known as a Wiener filter. This is sometimes
derived as the optimal linear estimate of the signal (optimal in a least-square
sense, e.g. Press et al.); however it also naturally results from the Bayesian
approach, which is the approach I take here.

We model the data as, d = s + n and we assume we know the statistics
of the signal and the noise are both Gaussian distributed. Their variances are
〈sisj〉 = Sij and 〈ninj〉 = Nij and for simplicity we assume they both have
zero mean. We then wish to determine the signal which optimises the posterior
probability,

P(s|d) = P(d|s)P(s)

P(d)
∝ e−

1
2
(d−s)TN−1(d−s) × e−

1
2
sTS−1s. (89)

The first term represents the likelihood of the data given the signal, and the
second term is the prior probability for the signal. Since the signal and noise
expectations are fixed, we simply need to minimise the term in the exponential
with respect to the signal. From this we find,

−N−1(d− s) + S−1s = 0 (90)

so the signal map which maximises the posterior probability has the solution,

s = S(S +N)−1d. (91)

Thus far the analysis is completely general, but if one considers homogeneous
fields, one can do the analysis in Fourier space where S and N are diagonal and
are effectively the power spectra (S(k) and N(k)). There the Wiener filter takes
its standard form:

sk =
S(k)

S(k) +N(k)
dk. (92)

Typically, low frequencies are signal dominated while high frequencies are noise
dominated; in such a case, the Wiener filter becomes effectively a low pass filter.

7.3 Marginalising over nuisance parameters

Sometimes there are systematic effects in the data which have a known shape
(or template) but an unknown amplitude. If one has a Gaussian prior for the
possible amplitude of the systematic, one can marginalise over the prior to
obtain a description of the data where the systematic no longer appears in the
data model, but rather makes its impact in a modified covariance matrix.

Suppose we have a known foreground template, f , which could be contami-
nating our data with an unknown amplitude, in the presence of Gaussian noise
(〈ninj〉 = Nij .) Our data model thus is,

d = s+Af + n (93)
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and the corresponding likelihood is

P(d|s,A, f) = 1

(2π)d/2 det |N |d/2 e
−

1
2
(d−s−Af)TN−1(d−s−Af) (94)

Suppose we introduce a Gaussian prior on A, P(A) ∝ e−A2/2σ2
A and then

marginalise over A. The terms involving A in the exponential are

−1

2
A2(σ−2

A + fTN−1f)−A(d− s)TN−1f

= −1

2
(A− Â)2(σ−2

A + fTN−1f) +
1

2
((d− s)TN−1f)2/(σ−2

A + fTN−1f) (95)

where the second line has been determined by completing the square and Â =
(d− s)TN−1f/(σ−2

A + fTN−1f)1/2. We can now marginalise over A to find a
new effective likelihood,

P(d|s,f) ∝ e−
1
2
(d−s)T Ñ−1(d−s) (96)

where
Ñ−1 = N−1 −N−1f fTN−1/(σ−2

A + fTN−1f). (97)

Perhaps remarkably this is not only invertible, but has a very simple form,

Ñ = N + σ2
Af fT (98)

which follows from the Sherman-Morrison formula. If more nuisance parameters
are marginalised, similar results can be derived using the Woodbury formula, a
generalisation of the Sherman-Morrison formula.

The net effect then of the nuisance parameters is to change the effective
covariance matrix, increasing the noise of the data modes which coincide with
the nuisance templates. The addition variance of these modes depend on the
prior for the noise amplitude. If a flat prior was assumed, this corresponds with
σ2
A → ∞, or infinite noise for these modes. In this case the covariance matrix

itself becomes infinite, so its generally useful to put some weak prior on the
nuisance amplitude.

8 Comparing models with the Bayesian Evidence

The discussion above centred finding the best parameters given some possible
model. However, often we are not sure what the parameters are, or even how
many of them there should be. Thus, we need to be able to compare between
very different models with completely diffrent parameterisations. The Bayesian
approach provides a way of addressing these issues, in which one of the most
important principles of reasoning, Occam’s razor, arises naturally. The basic
idea of Occam’s razor is that given two hypotheses which explain the observa-
tions equally well, we should prefer the simpler explanation, or effectively the
one with the fewer free parameters.

Here is where the notion of the Bayesian evidence becomes important. Pre-
viously it was just used as a normalisation factor, but the evidence is more than
that. It is the probability of observing the data given a particular model, but
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integrating over all possible parameters of that model. That is, if model A has
set of parameters θA for which you have priors P(θA|MA), then the evidence is
given by

P(D|MA) =

∫
dnθAP(D|θA,MA)P(θA|MA). (99)

Suppose you have two models, A and B, each with their own set of param-
eters (θA and θB) and you wish to discover which is most consistent with the
priors and observations. Consider the ratio

RAB =
P (MA|D, I)

P (MB |D, I)
=

P (MA|I)
P (MB |I)

× P (D|MA, I)

P (D|MB , I)
. (100)

Before seeing the data, you begin with some relative confidences in the two
models given all your prior information I, which is given by the first term on
the right. The second represents the ratio of the evidences for each of the
models, and is sometimes called the Bayes factor. RAB represents the relative
confidences in the two models, as modified by the observations. When RAB is
much larger than one, model A is favoured while model B is preferred if RAB

is small. If the ratio is of order 1, then one cannot make a clear preference.
One can get an intuition for the evidence by making some simplifying as-

sumptions. Assume first that the prior is flat in some region, uniform in the
region θmin

A,i < θA,i < θmax
A,i ; in this region it is simply given by the inverse of

the prior volume, V prior
A =

∏
i(θ

max
A,i − θmin

A,i ). Further, assume not only that
the data are Gaussianly distributed, but that they imply that the inferred pa-
rameters are also Gaussianly distributed. (This is effectively assuming that the
Cramer-Rao bound is saturated.) This implies that the likelihood is effectively,

P(x|θ) =
1

(2π)N/2| detC|1/2 e
−

1
2
(x−µ)TC−1(x−µ)

= P(x|θ̂)× e−
1
2
(θ−θ̂(x))TF (θ−θ̂(x)). (101)

Here, θ̂A(x) are the parameters which maximise the likelihood, and P(x|θ̂) is
just the value of the likelihood for those parameters, beyond which the function
drops off exponentially with a curvature F described by the Fisher matrix (or
inverse theory covariance.)

Now we can evaluate the evidence,

P(x|MA) =

∫
dnθAP(x|θ̂A)× e−

1
2
(θA−θ̂A(x))TF (θA−θ̂A(x)) × 1

V prior
A

(102)

where the integral is over the range defined by the prior. If we assume the
data are infomative relative to the prior, and that the Gaussian is only takes
significant values within the prior volume, we can perfom the integration to find,

P(x|MA) = P(x|θ̂A)× (2π)n/2| detF−1|1/2 × 1

V prior
A

. (103)

The middle factor is effectively the volume of parameter space left after having
seen the data (V post

A ), leaving the evidence as

P(x|MA) = P(x|θ̂A)×
V post
A

V prior
A

, (104)
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or the probability of the best fit model times the fraction of the original prior
volume that gives comparable likelihood to the best fit model. Thus it is not
enough that the best fit model is likely; the model should also be relatively
predictive in the sense that a large fraction of the parameter space should be
consistent with the observations. This second factor is sometimes called Occam’s

factor.

8.1 A simple example

It may be helpful to see this in action on a very simple example. Assume that
you measure some observable and find a some value with Gaussianly distributed
error, D = D ± σ. Suppose you wish to compare two models: model A which
predicts that D = 0, and model B which predicts that D = λ, where λmin >
λ > λmax. Model A has no parameters, so the evidence is simply

P (D|MA, I) = (2π)−
1
2σ−1e−D

2
/2σ2

. (105)

The evidence for model B requires an integration over possible values of λ :

P (D|MB , I) =

∫ λmax

λmin

dλP (λ|MB , I)(2π)
−

1
2σ−1e−(λ−D)2/2σ2

. (106)

Let us assume that the prior for λ is flat over the range, so that P (λ|MB .I) =
(λmax − λmin)

−1. Further, if we assume that the observation is well within the
allowed range and that σ ≪ λmax−λmin, then we can do the integration exactly
to find P (D|MB , I) = P (λ = D|MB , I) = (λmax − λmin)

−1.
Thus we find

RAB =
P (MA|I)
P (MB |I)

× λmax − λmin

(2π)
1
2σ

× e−D
2
/2σ2

. (107)

Again, the first factor is the ratio of the priors, while the exponential factor is
effectively the ratio of the best fit likelihood for model A to that for the best fit
model of model B (i.e. λ = D.) The second factor effectively penalises model B
because it has a larger parameter space. Given two models which fit the data
equally well, this factor will tell us to prefer the simpler model, the one with a
smaller parameter space. Basically, for more complex models, the probability of
any particular set of parameters is smaller, and so such models are disfavoured
unless the data are inconsistent with simpler models.

In this case, if the initial parameter space for model B is small (λmax−λmin ∼
20σ), then model A is preferred only if D < 2σ. However, this cutoff could grow
significantly if the B parameter space were increased exponentially. That is,
you should prefer the assumption that D = 0 if the observations show its within
a few sigma of 0. But when its safe to infer D 6= 0 depends on how big your
observed value is compared to the typical value you thought it might have before
the observation.

QUESTION: One application of this is to compare a models with and with-
out a cosmological constant. Particle physicists argue that the typical value is
of order 10120 times larger than the best fit value for the observations. Taking
this seriously, estimate how many sigma we need to conclude that we are really
observing a cosmological constant.
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8.2 Template searches

An important application of this discussion is trying to find particular signals in
noisy data. For example, do we detect a galaxy in a map dominated by Gaussian
noise? Or, is there evidence for a particular kind of gravitational wave source
in the LIGO data? To make this decision, we need to evaluate the ratio of the
evidences for models with and without the signals of interest.

Previously I described the concept of template matching, and showed that
if we model the data as d = At+n, where A is the amplitude of the template t
and the noise is assumed to be described by the covariance matrix N , then the
maximum likelihood estimate for the template amplitude A is given by

Â = dTN−1t/tTN−1t. (108)

The variance on this estimate was shown to be given by σ2
A = 1/tTN−1t.

This process will necessarily produce some answer for the best amplitude of the
template, but how do we decide whether the template actually exists in the
data?

To answer this question, we must decide on what threshold of the amplitude
is significant enough to consider whether the template has been detected. The
amplitude of this threshold must be set by the theoretical priors and depends on
how likely we believe we were to see it. The more rare the expected event, the
higher the threshold that must be met to infer a detection. (E.g., when trying to
detect point sources in astronomical data, it is useful to understand theoretically
what their expected number density and amplitude distribution is.) The prior
model should describe both the probability that the template exists (essentially
the prior Bayes ratio), and the expected distribution of the amplitude if it does
exist. Deciding the question of whether the template has been detected would
require evaluating the evidence ratio for the two hypotheses, that the template
is in the data and that it is not. This then reduces to the simple example
discussed above. The lower the expectation of finding the template, the smaller
is its prior Bayes ratio; thus, we require a higher evidence ratio to favor the
template hypothesis and so a higher signal-to-noise detection.

Example: searching for point sources An application of this is the prob-
lem of point source detection in a noisy field (or one dominated by Gaussian
fluctuations, such as the CMB.) In this case, if the point source is unresolved,
then it should appear with a known shape given by the beam of the instrument.
From theoretical considerations or other observations, we should have some idea
of the density of such sources on the sky and thus the probability that it will
be seen centered at any given point. We will also have some understanding of
the luminosity distribution of the sources, which will play the role of the prior
amplitude distribution. These considerations will inform our threshold for the
detection of sources. In general, we would be looking for sources over the entire
map, so we want to calculate Â for templates centered at every point, giving us
a map of the inferred amplitudes. This map is effectively a convolution of the
original map with the beam shape, weighted by the noise and divided by a local
sensitivity factor if the noise is inhomogeneous.
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9 MCMC techniques

Suppose you have a method of determining the posterior distribution, P (x), of a
given set of parameters and you want to understand what the whole probability
surface looks like, e.g. to find expectation functions or to perform marginal-
izations. One way of doing this is to evaluate the posterior on a grid of points
in parameter space, and then perform some interpolation to estimate what the
function looks like. As long as the grid is sufficiently small to resolve all the
interesting features of the distribution, this should work reasonably well.

Unfortunately, evaluating the posteriors takes time, particularly if one has
to run a relatively time consuming code like CMBfast for each point. Thus
you are limited somewhat on the number of gridpoints you can use. This is
not usually a problem if the parameter space is low dimensional, but quickly
becomes difficult as the number of dimensions rises. Even for fairly smooth
distributions, one needs a minimum ∼ 10 points, so the total number rises as
10n, where n is the dimension of parameter space. This starts to get difficult if
the number of parameters exceeds 5 or 6.

In addition, to improve the accuracy of the results, ideally you want to sam-
ple better the regions which have higher probability, because they will dominate
the integral. Otherwise, you will spend most of the time evaluating the function
in regions where there’s little chance of ending up, which is not very efficient.
Ideally, we need a way of sampling the distribution where its highest, so we can
get accurate answers with the minimum number of evaluations of the posterior
distribution. This is where MCMC techniques come in.

MCMC stands for Markov Chain Monte Carlo. Monte Carlo indicates in
some sense that rather than trying to solve the question exactly, there will be
some element of randomness involved. The basic idea is to take some random
path through parameter space evaluating the posterior function along the way.
We then arrange it so that the paths are concentrated in the parts of parameter
space where the distribution is highest.

The paths we choose are called Markov chains. The basic definition of such
a chain is that the nth point in the chain depends only where it was for the
n − 1 point, but not on any earlier points. Thus, the path has a very short
term memory. The most basic example of a Markov chain is a random walk.
For example, in one dimension suppose you flip a coin at every step, moving
forward or back one unit depending on the outcome. Your position follows a
random walk; where you go next depends on where you are now, but not how
you got there.

9.1 Metropolis-Hastings algorithm

There are many MCMC algorithms; here we will focus on one simple exam-
ple called the Metropolis-Hastings algorithm. One starts at a random place in
parameter space, x0. Based on some function, called the proposal density, you
randomly determine a trial next step, xt. The proposal density, Q(x0,xt), is can
be any fixed function, but often is taken as a Gaussian centred on the current
position. (Often we assume the proposal density is symmetric on interchanging
x0 and xt, which simplifies things a bit.) If the probability of that trial step is
higher than that of the present step, then we ”accept” it as the next step. If
the likelihood is lower than the present likelihood, then you should make that
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step only sometimes, with probability equal to the ratio of the probabilities,
P (xt)/P (x0). If you decide not to take a given trial step, throw it out and
repeat the process from the previous step.

The more general Metropolis-Hastings algorithm, with an asymmetric pro-
posal density, is not much harder:

1. Randomly choose a starting point x0.

2. Use Q(x,xt) to randomly choose a trial next point, xt.

3. Evaluate the ratio:

α =
P (xt)Q(xt,x0)

P (x0)Q(x0,xt)
(109)

4. If α > 1, xt becomes the next point in the chain.

5. If α < 1, xt becomes the next point only with probability α. Otherwise
the x0 is repeated.

6. Begin again with this new starting point.

In the long time limit, this will sample the distribution perfectly. However,
there are some ways of speeding up the process. One is to recognise that you
might have begun in a poor place, so you might spend a lot of time initially
making it to the peak of the distribution. At least initially, your chains will
be biased because of this, over representing the region near the starting point.
Thus the initial phase of getting near the peak, called the ‘burn in’, is generally
thrown away. (For example, you might choose to ignore all points before the
chain reached 10% of the maximum probability.)

Another important issue is deciding you have enough points in the chain.
This will depend on the precise statistic you are interested in, and the nature of
the probability distribution. For example, for a bimodal distribution with two
isolated maxima, it may take quite a while for the chain to discover the second
maximum and sample it sufficiently. One approach to decide a stopping point
is to monitor how the statistic of interest changes as the chains grow in length;
e.g., you can split the chain in two and see how the estimate changes from the
first half to the second half. Alternatively, you can also consider multiple chains
starting out at different points, and see the variance between the estimators for
different chains. Typical chains in cosmology run of order 104 steps.

9.1.1 The proposal density

The other essential thing is to have a reasonable choice of proposal function.
While the exact shape of the transition function is not that crucial (its often
taken as a multi-variate Gaussian), it is important to get the width of the
function correct. If the typical step size is too small, it will take forever to
reach the likelihood maximum and the samples will be highly correlated. In
addition, a small step size means the chain could be stuck for a long time in
a local maximum which is not the global maximum, which would strongly bias
your results.

On the other hand, if the step size is too large, you will find most of your
steps being rejected. If you are near the peak of the distribution, every step you
try to take will be to a much lower likelihood, and will be rejected with high
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probability. Thus, it will take a long time for the chains to grow significantly.
A typical way around these difficulties is to measure the local curvature of the
function, or to run an initial chain to determine the curvature, and to use this
to determine the initial transition function.

Also, if there are variables which are strongly correlated in the target distri-
bution, the proposal distribution should reflect these correlations. Effectively,
this keeps the chain targeting the regions of parameter space where the target
distribution is highest. For a well tuned proposal density, typical acceptance
rates are around 25%.

MCMC methods can be much faster at than simple integration techniques
for large numbers of dimensions. This is because one effectively does a random
walk in every direction simultaneously. A lower bound to the number of steps is
(L/σ)2 where L is the typical distance that the random walk must transverse,
and σ is the typical step size in that dimension.

9.2 Formal criteria

What are the formal criteria to ensure that the Markov chain samples with
the likelihood density? One criteria is that if you have an ensemble points
of which is distributed according to the target probability density, and apply
the transition function for each of these points, the resulting ensemble should
also be distributed with the same probability. This is called invariance of the

distribution under the transition function. One also has to be careful that all
points in the distribution can be reached from the starting point using the
transition function, that is, there are no detached paths, or paths that are
periodically repeating themselves. Finally, often a constraint called detailed

balance is imposed, which implies that the paths are reversible. Detailed balance
means that the probability density of being at point x1 times the transition
probability of going from point x1 to point x2, is identical to the probability
density of being at point x2 times the transition probability of going from point
x2 to point x1.

QUESTION - Show that this is true for the Metropolis-Hastings algorithm.
For more information on MCMC methods, I like the book by David MacKay,

“Information theory, inference, and learning algorithms,” Cambridge University
Press (2003), Chapters 29 and 30. Also, see the COSMO-MC paper by Antony
Lewis and Sarah Bridle.

9.3 Importance sampling

Given a chain, it is straight forward finding expectation values for the probability
distribution. For any function of the parameters, the expectation is simply

〈f(x)〉 =
∫

dNxP (x)f(x) ≃ 1

N

N∑

i=1

f(xi) (110)

One caution on MCMC however, is that while they are usually good at finding
expectation values, they are inefficient in finding reliable information about
the tails of the distribution. Thus one should be very cautious in using them
to evaluate statistics which are sensitive to the tails. Instead one should run
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chains which sample that parameter space most relavant to the statistics one is
trying to evaluate.

Sometimes one wishes to find expectations for a distribution P ′(x) which is
similar to P (x) but not the same. As long as it similar enough, you can use
the same chain found for P (x), with a relative weighting to account for the
difference, i.e.,

〈f(x)〉P ′ =

∫
dNxP ′(x)f(x) ≃ 1

N

N∑

i=1

P ′(x)

P (x)
f(xi). (111)

This is known as importance sampling and can be useful in a number of cir-
cumstances, for example if one wants to see how the results respond to slight
changes in the prior assumptions.

In the CMB, where evaluating a likelihood for a set of parameters exactly
can be computationally very expensive, sometimes an approximate code is used
to find the chains initially. These chains can be sampled to remove strong
correlations between steps, and then the true likelihoods can be found only
at these steps. Then importance sampling is used to find the true posterior
distribution.

10 Statistics of fields

Thus far the discussion has been as general as possible, but it’s worth spending
some time discussing statistics which characterise fields. Applications of this
arise all the time in astronomy: e.g., in analysing time stream data (1-d), images
on the sky (2-d) or density fields in space (3-d).

For fields, the data are indexed by a position variable, x (or in one dimension,
it is sometimes taken as a time variable , t.) These data may be well determined
or they may contain noise. One usually assumes one is seeing a random sample,
and trying to find characteristics of the underlying distribution.

A few key assumptions make it possible to probe the underlying distribution.
The first is homogeneity, which requires that any joint probability distributions
remain the same when the set of positions, x1,x2,x3 · · ·, is translated (but not
rotated). This implies that the probabilities depend on the relative, not abso-
lute, positions. (This is sometimes called stationarity for one dimensional fields,
particularly in the time domain.) The second property is isotropy, which implies
that any joint probabilities are unchanged when the set of positions are rotated.
Finally, ergodicity implies that all the information about an underlying distri-
bution can be learnt from a single (if infinite) realisation of the field. Ergodicity
is obviously of great importance in a cosmological context, since we have only
one realisation of the Universe!

Ergodicity means that we can imagine an infinite single field which we are
sampling at a few finite points. From homogeneity, any statistical properties
should be invariant of where we measure, so if we average over a big enough
volume, we should find the underlying statistical properties of the field. Thus
in effect, we can replace expectations by a volume average.
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10.1 Correlation functions

For example, consider a density field ρ(x). The mean of the field can be found
by

ρ̄ ≡ 〈ρ(x)〉 = lim
V→∞

1

V

∫

V

dNx0 ρ(x0), (112)

which is the one point moment, and it must be independent of position by
homogeneity. We could also measure the one point distribution function, which
tells us what fraction of random samples the density lies in some range.

Let’s now consider higher order moments of the field, but for simplicity
subtract off the mean of the field; i.e., we will focus on δ(x) = (ρ(x)− ρ̄)/ρ̄. (In
the earlier language, we focus on the central moments.)

The two point correlation is simply the covariance between the field measured
at two points,

ξ(x) = 〈δ(x0)δ(x0 + x)〉. (113)

Again, homogeneity implies it can only be a function of the relative positions of
the points. If in addition the field is isotropic, then the correlation is a function
of the distance between the points alone, ξ(|x|). Finally, the variance of the
field is the two point correlation function evaluated at the same point, ξ(0).

The three point function is defined similarly,

ζ(x1,x2) = 〈δ(x0)δ(x0 + x1)δ(x0 + x2)〉. (114)

Again, isotropy here means that the function only depends on the triangle of
the relative positions of the points. There are three degrees of freedom, uniquely
defined by the lengths of the edges.

We can define arbitrarily N point correlation functions in exactly the same
way, and potentially they can tell us something fresh about the distribution.
However, if we wish to focus on the new information, it makes sense to de-
fine connected correlation functions, completely analogously to the cumulants
defined earlier. All the information of Gaussian fields is contained in the two
point correlation function; any higher order correlations are simple functions of
it, and can be found using Wick’s theorem.

10.2 Fourier space statistics

We can also consider an alternate basis for the fields, and consider the statistics
in this basis. The most useful basis to consider is Fourier space, defined as

δk =
1

V

∫
dNxδ(x)eik·x. (115)

This has the inverse,

δ(x) =
V

(2π)N

∫
dNkδke

−ik·x. (116)

We can now consider the two, three and higher point moments in Fourier
space. The two point moments is

〈δkδk′〉 = 1

V 2

∫
dNxdNx′〈δ(x)δ(x′)〉ei(k·x+k′

·x′). (117)
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We can make the change of variable x′′ = x′ − x and use the fact that the two
point function is only a function of the relative position x′′ to show,

〈δkδk′〉 =
1

V 2

∫
dNxdNx′′〈δ(x)δ(x+ x′′)〉ei(k+k′)·x+ik′

·x′′

= δD(k+ k′)
(2π)N

V 2

∫
dNx′′eik

′
·x′′

ξ(x′′)

≡ (2π)N

V
δD(k+ k′)P (k). (118)

Here, we have integrated over x to get the Dirac delta function and defined
the power spectrum P (k) as the Fourier transform of the two point correlation
function. (Be warned, there are many slightly different conventions for this
definition.) The correlation function is simply the inverse transform of the
power spectrum:

ξ(x) =
V

(2π)N

∫
dNkP (k)e−ik·x. (119)

If we further assume isotropy, the correlation depends only on the separation
distance, and so the power spectrum depends only on the magnitude, k. In these
cases the angular integrals can usually be simply performed. In two dimensions,
this is

ξ(x) =
2πV

(2π)2

∫
∞

0

kdkP (k)J0(kx), (120)

where J0(z) is the ordinary Bessel function. In three dimensions, this is instead,

ξ(x) =
4πV

(2π)3

∫
∞

0

k2dkP (k)j0(kx), (121)

where j0(z) = sin(z)/z is a spherical Bessel function. The variance of the field
in either case is given by

σ2 = ξ(0) =
V

(2π)N

∫
dNkP (k) ∝

∫
kN−1dkP (k). (122)

Often we consider power spectra which follow a power law in k, P (k) ∝
kn, which are called scale independent. Two are of special significance: the
white noise spectrum where the power is constant (n = 0), corresponding to
a delta function for the correlation function, and the scale invariant spectrum
(n = −N), corresponding to equal contributions per log interval of k. The
scale invariant spectrum is both infra-red and ultra-violet log divergent. Redder
spectra (n < −N) are infra-red divergent, while bluer spectra (n > −N) are
ultra-violet divergent. Note that in large scale structure, we usually have near
scale invariance in the potential field (n = −3), which corresponds to a bluer
index for the density fluctuations (n = 1).

The analog to the three point correlation function is called the bispectrum,
defined as

〈δk1
δk2

δk3
〉 ≡ (2π)N

V
δD(k1 + k2 + k3)B(k1,k2), (123)

where the Dirac delta function comes from homogeneity as above. The bis-
pectrum is the transform of ζ(x1,x2), and given isotropy is a function only of
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the shape of the triangle defined between k1,k2 and k3. Thus it is sometimes
written as B(k1, k2, k3). Higher order correlations can be similarly defined.

Note that the power spectrum can be calculated from the magnitudes of the
δk alone, without any phase information. Since all the information of a Gaussian
field is in the power spectrum, there should be none in the phases. Any phase
correlations are a sign of non-Gaussianity.

10.3 Window functions

In real life its rarely possible to sample a field at an infinitesimal point; because
of observational constraints like resolution issues, we actually measure a field
smoothed over some scale. The kind of smoothing depends on the experiment,
but in general the observed field is the underlying convolved with some window
function, W (y):

δobs(x) =
1

V

∫
dNyW (y)δ(x+ y) (124)

The observed two point function can be found with a double convolution of the
underlying one:

ξobs(x) =
1

V 2

∫
dNydNy′W (y)W (y′)ξ(x+ y − y′). (125)

This can be a bit hard to evaluate directly, but it simplifies significantly in
Fourier space, where convolutions become products. Thus,

δobsk = Wkδk, (126)

whereWk is the Fourier transform ofW (x). Assuming an isotropic window func-
tion, the observed power spectrum is P obs(k) = W 2(k)P (k); so, for example,
the observed correlation function in three dimensions is given by,

ξobs(x) =
4πV

(2π)3

∫
∞

0

k2dkW 2(k)P (k)j0(kx). (127)

Typical window functions include Gaussian functions and tophat functions,
and these have the effect of damping any structure smaller than the smoothing
length; that is, the high k modes are suppressed. Conventionally, the window
function is usually defined such that

1

V

∫
dNyW (y) = 1. (128)

For example, the 3-d Gaussian window function in real space is

W (x) =
V

(2π)3/2R3
e−r2/2R2

(129)

and its Fourier transform is simply Wk = e−k2R2/2 which → 1 for k → 0.
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10.4 Selection function

It is also impossible to sample a field at every point in space. The above ap-
proach can also be used to take into account limits to the geometry of the
sample. Here though, it is a product in real space, and a convolution in Fourier
space. These constraints make the measurements less sensitive to large scale
(low k) power. The observations should not be sensitive to wavenumbers much
smaller than the inverse of the characteristic scale (D) of the survey.

The sample geometry is characterised by the selection function, f(x), which
is normalised similarly to the window function. For galaxy surveys, this is often
the product of a sky mask times the redshift selection function. The observed
structure is simply the product of the true structure times the selection function,
δobs(x) ≡ δ(x)f(x). In Fourier space, this becomes a convolution,

δobsk =
V

(2π)N

∫
dNk′δk′fk−k′ . (130)

Note that the selection function explicitly breaks breaks translation invariance,
meaning that the two-point statistics are no longer diagonal in Fourier space.
However, their expectations can be calculated similarly,

〈δobsk δobs∗k′ 〉 = V

(2π)N

∫
dNk′′Pk′′fk−k′′f∗

k′−k′′ . (131)

Rather than trying to invert this expression directly for the true power spectrum,
it is more common to use search some parameterisation of the underlying power
spectrum for one which can reproduce the observed two-point statistics.

Yet one more complication exists when sampling a field over a finite patch,
which is that we usually do not observe the fractional over density, but rather
the total density. To construct overdensity, we would need to know the true
background density of the field, whereas usually we only know the density ob-
served locally. If our inferred density contrast is δ̃(x), it must be related to the
true density contrast through, ρ(x) = ρ̄(1 + δ(x)) = ρ̄local(1 + δ̃(x)), where

ρ̄local = ρ̄+
1

V

∫
dNxf(x)(ρ̄δ(x)). (132)

Thus, the inferred density is given by,

δ̃(x) =
ρ̄

ρ̄local
×
(
δ(x)− 1

V

∫
dNxf(x)δ(x)

)
(133)

The prefactor will give a small correction in the normalisation of the inferred
power spectrum, and we will drop it for simplicity.

Again, the observed field is only measured over a finite region, so the true
observable is given by δ̃obs(x) = δ̃(x)f(x). In Fourier space, it can be written as

δ̃obsk =
V

(2π)N

∫
dNk′δk′fk−k′ − fk

1

V

∫
dNxf(x)δ(x)

=
V

(2π)N

∫
dNk′δk′ (fk−k′ − fkfk′) . (134)

By definition, we are subtracting off the local mean and so the average of this
new field should be zero; in Fourier space, this corresponds to δ̃obs0 = 0, which
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follows from above since f0 = 1. This is known as the integral constraint, and
the above equation demonstrates that the observables will not depend on modes
much larger than the region which is probed.

Note that the effective power spectrum window is somewhat different from
that implied by Peacock (eq. 16.127). There, the effective window for 〈δ̃obsk δ̃obs∗k 〉
is |fk−k′ |2 − |fk|2|fk′ |2, whereas squaring the aboove expression gives |fk−k′ −
fkfk′ |2. These do not appear to be equilavent and evaluating them for exponen-
tial selection functions they seem to differ by about a factor of two for small k
and k′, though they both obey the integral constraint. (Perhaps I have erred, or
pehaps the Peacock analysis ignores the fact that the mean is not any number,
but is itself a function of the density field and so is correlated with it.)

10.5 Wavelets and other transformations

δ(x) is localised in real space, and δk is localised in Fourier space. We can also
consider transformations of the data which are localised in neither, and these are
generically called wavelets. One can then perform the same statistical measures
on the amplitudes in the wavelet basis.

For example, one can smooth the field with a many Gaussian window func-
tions, centred at different positions and using a range of smoothing lengths,
and use these amplitudes to represent the data instead. Ideally the wavelet
basis should contain the same information as field, with the same number of
amplitudes so there is no redundant information.

In practise wavelets are often chosen on the basis of how fast they are to
compute. There are a number of fast wavelet transforms for discrete data which
are typically used. While one can easily measure the probability distributions
in a wavelet basis, its generally not particularly a good basis for finding analytic
predictions. Generally they are used for comparing to simulated data sets.

Wavelets are often a good way of compressing data; one simply keeps those
which have an amplitude greater than a particular threshold. This is necessarily
a lossy compression (some information is lost); but with the right wavelet choice
you can ensure that the important information is stored more compactly.

10.6 Measures of non-Gaussianity

Often one wants to know if a particular map is Gaussian. To do this, one
chooses some (sometimes arbitrary) statistics of the map and compares them
to a collection of Gaussian maps with the same power spectrum. Its best to
find a statistic which will be sensitive to the form of non-Gaussianity you might
expect to see. However, beware of falling into the trap of defining the statistic
based on the map you wish to test; such posteriorly defined statistics are nearly
impossible to interpret.

It can be useful to look at topological measures of the field. For example,
consider all regions where the field is above (or below) a given threshold. What
is the distribution of volumes for the disconnected regions? How are their total
surface areas distributed? How many handles (holes) does a typical region have?
These measures are known as Minkowski functionals. While useful measures,
they tend to emphasises small scale features where noise is often dominant.

Other interesting statistics focus on the peaks or minima of the fields. For
example, one can make a discrete map of the maxima above a given threshold,
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and look at their density and higher order correlation functions.

11 Advanced topics

11.1 Future advanced topics

• Resampling techniques

• Kolmogorov-Smirnov tests, extensions

• Diffusion, Martingales

• Independent component analysis

• Tests of isotropy

11.2 Interesting problems

• The Monty Hall problem

Monty Hall is a game show host, who offers you the choice of what lies
behind door number 1, door number 2 or door number 3; behind one of
these is a brand new car, while the other two have consolation prizes.
Once you have chosen your door, Monty shows you that one of the other
doors has a goat behind it. He then offers you a chance to change your
choice to the third door. Do you swap prizes? Does it make a difference?
(Assume he always gives you this choice, whether or not you originally
chose correctly.)

• Doomsday and Sleeping Beauty problems

The Doomsday argument says that humanity is near an end. On the basis
that you are a typical human observer, you might expect roughly as many
humans to exist after you as have existed before you ( 60 billion.) However,
if the population is growing exponentially, e.g. doubling every 30 years, it
will reach 60 billion in 100 years time and we have a high probability of
being extinct. Obviously exponential growth is not sustainable, but the
argument is made that even if population stabilises, humanity only has a
few thousand years left.

The Sleeping Beauty problem also relates to anthropic arguments. On
Sunday she sleeps, and on the basis of a coin flip, she is awoken either
only on Monday (heads) or on both Monday and Tuesday (tails). When
awoken, she is interviewed and then given an amesia-inducing sleep drug
and is finally awoken Wednesday to end the experiment. When she is
interviewed, she is asked what she views as the probability that the coin
came up heads. What should her answer be?

• Simpson’s paradox

Simpson’s paradox is an apparent inconsistency where a trend seen in two
subgroups of data is reversed when these subgroups are combined. An
example taken from Wikipedia: 13 students apply for maths scholarships
(8 boys, 5 girls) and 13 students apply for physics scholarships (8 girls
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and 5 boys). Of the maths scholarships, 2 are won by boys (2/8 = 25%)
and 1 is won by a girl (1/5 = 20%). Of the physics scholarships, 6 are
won by girls (6/8 = 75%) and 4 are won by boys (4/5 = 80%.) Despite
achieving a higher success rate in both types of scholarships, the boys
are less successsful on the whole (6/13 boys win scholarships compared
to 7/13 girls.) This occurs because the boys preferentially applied for the
kinds of scholarships which proved harder to obtain.

This also can occur with continuous data, where two subsets of data have
a particular trend, but the opposite trend is seen when they are combined.
Random splits of data sets can sometimes yield the Simpson’s paradox, but
its more likely to be a true casual effect if the splitting is well motivated.

• Lindley’s paradox

This is an apparent disagreement between Bayesian and frequentist ap-
proaches for hypothesis testing, resulting from the fact that the approaches
are asking fundamentally different questions. For example, a frequentist
test might exclude some hypothesis as unlikely, while a Bayesian approach
shows it is preferred to some other, less constraining hypothesis.

• Stein’s paradox

This phenomenon shows that when three or more parameters are esti-
mated together, there exist combined estimators which are more accurate
on average than if the parameters are estimated separately; this is true

even when the parameters and the data are completely independent of each

other.

For example, suppose you estimate n parameters θi based on one mea-
surement of each, xi, where the errors are Gaussian and independent.
Stein’s paradox says that the estimator which minimises a risk function
based on the mean squared error, 〈∑i(θi −Wi)

2〉 is not simply the vector
Wi = xi, even though for individual parameter xi is the optimal least
squared estimator. The James-Stein estimator is one which shrinks the
naive estimator towards the origin (or apparently in any random direc-
tion!) [I can’t say I understand this; I suspect it reflects an implicit prior
in the assumed risk function with a preferred point in parameter space.
Frequentists are funny like that.]
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Appendix A: Glossary of some statistical terms

boot-strapping - a resampling technique where a set of simulated data sets
are created from an observed data set by use of resampling with replace-
ment. This is done either by random sampling or by exhausting all ways
the resampling could be done.

Gibbs’ sampling - a Monte Carlo method where the random steps are taken
in a single dimension, alternating in turn through every dimension.

independent component analysis - a method of blind source separation;
it typically assumes the observations are an unknown linear transforma-
tion of a number of independent non-Gaussian sources. The method at-
tempts to find the inverse transformation which maximises the inferred
non-Gaussianity of the inferred sources.

jack-knife - a specific resampling technique where properties such as the vari-
ance are derived from the ensemble of smaller data sets where one or more
points (or regions) of the data are omitted.

Kahunen-Loeve transform or decomposition - effectively another name
for principal component analysis, it describes the transformation of data
into uncorrelated components.

Kolmogorov-Smirnov test - a method of comparing whether two distribu-
tions are consistent by finding the largest value of the difference between
their cumulative distribution functions. See Numerical Recipes for a nice
discussion of it and extensions.

Martingale series - a random process where the expectation value of the next
observation is simply given by the present observation, though possibly in
a way that involves past observations.

Markov series - a random process where the next observation depends only
on the present observation and not on the past.

non-parametric models - while any statistical description requires some choice
of parameters to be quantified, in astronomy this generally refers to a
choice which does not assume some particular model; for example, infer-
ring bins of a power spectrum.

robust statistics - a set of statistics which may not be optimal, but is more ro-
bust against a small contimation by outliers which might be non-Gaussian
or have a large variance. For example, the median may be a more robust
estimator of the centre of a distribution than the mean, which could be
thrown off by a single large outlier.
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Appendix B: Useful Relations of Special Func-

tions

Spherical harmonic relations:

• Definition

Ylm(θ, φ) =

(
2l + 1

4π

(l −m)!

(l +m)!

)1/2

Pm
l (cos θ)eimφ

• Orthogonality -

∫
Yℓm(n)Y ∗

ℓ′m′(n)dΩn = δℓℓ′δmm′

• Completeness -

∑

ℓm

Yℓm(n)Y ∗

ℓm(n′) = δ(φ− φ′)δ(cos θ − cos θ′)

• Plane wave expansion -

eik·r = 4π
∑

ℓm

iℓjℓ(kr)Yℓm(k̂)Y ∗

ℓm(r̂) =
∑

ℓ

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ),

where jℓ(x) are the spherical Bessel functions.

Legendre relations (note Pl(x) = P 0
l (x)):

• Legendre equation

(1− x2)
d2

dx2
Pm
l (x)− 2x

d

dx
Pm
l (x) +

[
l(l + 1)− m2

1− x2

]
Pm
l (x) = 0

• Orthogonality

∫ 1

−1

Pm
l (x)Pm

l′ (x)dx =
2

2l + 1

(l +m)!

(l −m)!
δll′

• Rodrigues’ formula

Pm
l (x) =

(−1)m

2ll!
(x2 − 1)m/2 dl+m

dxl+m
(x2 − 1)l

• Derivative relation

(1− x2)
d

dx
Pm
l (x) = (l −m+ 1)Pm

l (x)− (l + 1)xPm
l (x)

• Recurrence relation

(2l + 1)xPm
l (x) = (l −m+ 1)Pm

l+1(x) + (l +m)Pm
l−1(x)
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• Relation to spherical harmonics

(2l + 1)Pl(k̂ · r̂) = 4π
∑

m

Ylm(k̂)Y ∗

lm(r̂)

Bessel relations (useful for 2-d relations):

• Bessel equation

d2

dx2
Jm(x) +

1

x

d

dx
Jm(x) +

(
1− m2

x2

)
Jm(x) = 0

• Orthogonality ∫
kdkJm(kρ)Jm(kρ′) =

1

ρ
δ(ρ− ρ′)

• Plane wave expansion

eikρ cosφ =
∑

m

imeimφJm(kρ)

• Integral representation

Jm(x) =
1

2πim

∫ 2π

0

dφeix cosφ−imφ

• Derivative relation

d

dx
Jm(x) =

1

2
[Jm−1(x)− Jm+1(x)]

• Recurrence relation

Jm+1(x) =
2m

x
Jm(x)− Jm−1(x)

• Spherical Bessel functions

jm(x) ≡
( π

2x

)1/2
Jm+ 1

2
(x)
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