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Going beyond GR: why?

Consistency ! singularities? Quantum mechanics?

Applicability at larger scales ! Dark matter? Dark energy?
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Existing tests: weakly-gravitating, mildly relativistic regime of
Einstein equations
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Going beyond GR: why?

First time we can detect GWs,
providing direct proof of the
existence of BHs.

The dynamics of the orbital motion
a↵ected by GW emission through
back-reaction

) GWs can be used to test gravity in this high curvature and
highly relativistic regime!



Why Lorentz-violating gravity?

Lorentz invariance is at the core of theoretical physics

• High Energy Physics only constrains the matter sector and its coupling to
gravity.

• Phenomenology ! try to understand what would be the signature of
these theories.

• A model for Quantum Gravity: Horava gravity

How to describe such a theory?



Going beyond GR: how?

Two experimentally verified principles are on the basis of the so-called metric
theories of gravity:

The Einstein Equivalence Principle (EEP),

The Principle of special relativity.

Among these, Einstein’s General Relativity is the current ”standard” theory of
gravitation.

It can be defined by two postulates:

The Lagrangian density LEinstein�Hilbert[g↵� ] =
c

4

16⇡GN
R(g↵�),

The metric gµ⌫ couples universally, and minimally, to all the fields of the
Standard Model.

Smatter ⌘ Smatter[ matter; g↵� ]
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Going beyond GR: how?

Lovelock’s theorem

In a 4-dimensional spacetime, the only divergence-free symmetric rank-2
tensor constructed from the metric gµ⌫ and its derivatives up to second
di↵erential order, and preserving di↵eomorphism invariance, is the Einstein
tensor plus a cosmological term, i.e., Gµ⌫ + ⇤gµ⌫ .

How to break Lorentz invariance without giving up general covariance and still
verify the EEP and SR?

! Extra dynamical field that can define a preferred frame at the level of
the solution!
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Æ-theory and HL gravity

A unitary vector field u which interacts with the metric g
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1
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In the Horava-Lifshitz case we impose the orthogonality condition before
variation

uµ =
rµTp

g↵�r↵
T r�
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Æ-theory and HL gravity

The metric and the aether must satisfy the set of modified field equations
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rµ(2E
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µÆ⌫) = �Æµr⌫
u

µ
.
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Modified dynamics: sensitivities

Generically, the motion of a self-gravitating object will depend on the
external values of the field.

We can write

Spp = �
Z

d⌧ m̃(�)

= �m̃

Z
d⌧

�
1 + �(1� �) +O[(1� �)2]

�

The Lorentz factor and the sensitivity :

� ⌘ Uµu
µ
, � ⌘ �d ln m̃(�)

d ln �

���
�=1



Æ theory and HL gravity

By getting the PN solution to the Modified field equations, one finds that the
dipolar emission is encoded in the numerical values of the sensitivities.

In order to get the sensitivities, we study the slow motion of a black-hole,
defined as the asymptotically stationary flow of the aether in the z direction
with an infinitesimal speed V .



Static, spherically symmetric black-holes in
Einstein-Aether theory

In Eddington-Finkelstein coordinates {v, r,�, ✓} the metric Ansatz of a static
spherically symmetric black-hole is

ds2 =
⇣
f(r)dv2 � 2B(r)drdv � r

2d⌦2
⌘

(1)

while the æther field Ansatz reads

u

µ
@µ = A(r)@v � 1� f(r)A2(r)

2B(r)A(r)
@r.

This leads to a system of ordinary di↵erential equations for f 00(r), A00(r) and
B

0(r).



Static, spherically symmetric black-holes in
Einstein-Aether theory

We fix c1, c2, c3 and c4.

We can integrate this set from say, the black-hole’s horizon.

We obtain a 3-parameter family of solutions. However, asymptotic flatness
reduces this to a 2-parameter set of solution and finally regularity at the
universal horizon leads to a 1-parameter family of solution.

! For each mass, there’s only one static spherically symmetric black-hole.



Static, spherically symmetric black-holes in
Einstein-Aether theory
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The perturbed black-hole

In Eddington-Finkelstein coordinates {v, r,�, ✓} the metric Ansatz reads

ds2 =
⇣
f(r)dv2 � 2B(r)drdv � r

2d⌦2
⌘

(background)

+ V

⇣
cos ✓  (r)dv2 + 2dvf(r)

�
cos ✓

⇥
�(r)�B(r) (r)

⇤
dr � sin ✓ �(r)d✓

�

+B(r) cos ✓
�
 (r)� 2�(r)

�
dr2 + 2 sin ✓

�
B(r)�(r)� ⌃(r)

�⌘
drd✓

+O(V 2)

while the vector field Ansatz reads

uµ = u

b
µ + V �uµ +O(V 2)

= {ub
v + V cos ✓ �uv(r), u

b
r + V cos ✓ �ur(r), 0, 0}+O(V 2)



The black hole solution

This leads to a linear system of di↵erential equations on �00(r), �00(r),  00(r)
and ⌃0(r) plus two constraint equations.

A few things could be done in order to simplify matters:

Compactify our integration variable by solving for s = 1/r.

Turn our system into a first order one.

This eventually leads to the following di↵erential equations

X

0(s) = M(s) ·X(s) ,

where X(s) =
�
p�, p�, p , �, �,  , ⌃

�
(s) and for instance, p�(s) ⌘ �

0(s).



The black hole solution

We would like to integrate the system

X

0(s) = M(s) ·X(s) ,

given initial data at the horizon ! 7 parameters

Two constraints: 7� 2 ! 5 parameters

Regularity at the horizon: 5� 3 ! 2 parameters

Scaling invariance: 2� 1 ! 1 only one free parameter for the initial data.

Hair?

Generic solutions aren’t regular at infinity. In fact, we can determine the value
of the free parameter by a bisection procedure that converges to a regular
solution.
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The bisection procedure
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The sensitivities from the numerical solution
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The sensitivities from the numerical solution

The sensitivities are encoded in the coe�cients of the asymptotic solution!

g0000 = 1� 1

c

2

2GNm̃1

r

0
1

+
1

c

4

h2G2
Nm̃

2
1

r

02
1

+
2G2

Nm̃1m̃2

r

0
1r

0
2

+
2G2

Nm̃1m̃2

r

0
1r

0
12

�3G2
Nm̃1

r

0
1

v

02
1(1 + �1)

i
+ 1 $ 2 +O(1/c6) ,

and similar expressions for g00i0 , gi0j0 .

m̃A is the mass of the A-th point particle,

v

0i
A its velocity,

r

0
12 the binary’s separation,

r

0
A the distance from the A-th particle to the field point, and

GN is the newtonian gravitational constant as measured by
Cavendish-type experiments.



The e↵ect of the sensitivities on the Motion of
Binary Systems

The strong equivalence principle is defined as the universality of free fall for
strongly gravitating bodies. GR satisfies this principle, but this is clearly not
the case for theories in which the sensitivities are not zero.

The sensitivities a↵ect both the conservative and dissipative sectors. For
instance, at Newtonian order the motion of a binary is described by

v̇

i
A = �GmBn̂

i
AB

r

2
AB

,

where we define the active gravitational masses as

mB ⌘ m̃B(1 + �B) ,

and the 2-body coupling

G ⌘ GN

(1 + �A)(1 + �B)
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Exploring the allowed phase space

Recipe:

• Give c1, c2, c3, c4 within the allowed regions.

• Integrate for the static solution ! f(r), B(r), A(r).

• Integrate for the stationary solution ! �(r), �(r),  (r), ⌃(r).

• Read o↵ the sensitivities � as �(ci,M).

• Check for the flux deviation.

• Constrain the parameter space!
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Future collaborations will improve our capacity to constrain dipolar emission

ĖGW

ĖGR

= 1 +B

✓
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where m and r12

are the binary’s total mass
and orbital separation.

B is a theory-dependent
parameter regulating the
strength of the dipole term.
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CONCLUSIONS

• We got the great opportunity to test GR in new extreme regimes.

• Lorentz invariance is yet to be tested within binary BHs

• One must check for deviations of the GR flux prediction

• Prospects:

I Integration up to the universal horizon?

I Exploring the allowed phase space for LV-gravities

I Numerical simulations for the merging?


