On the implementation of the spherical collapse model

Francesco Pace

& S. Meyer, M. Bartelmann

JBCA, University of Manchester

22nd June 2017, ICG@15, Portsmouth, UK

- Numerical effects
- 4
- Novel implementation

Francesco Pace

Theoretical motivations

- The SCM is important for non-linear evolution of structures
- It is the main ingredient for the mass function (MF)
- The MF is used for the halo model
- The MF is sensitive to cosmology

Personal motivation

Batista & FP, 2013

Francesco Pace

Personal motivation

Herrera, Waga, Jorás, 2017

Francesco Pace

Spherical collapse model

- It follows the evolution of the overdense sphere
- Characterised by 4 parameters: a_{ta} , ζ , δ_c , Δ_V

Francesco Pace

Spherical collapse model

- It follows the evolution of the overdense sphere
- Characterised by 4 parameters: a_{ta}, ζ, δ_c, Δ_V
- Two different approaches

Evolution of the radius of the sphere

Francesco Pace

Spherical collapse model

- It follows the evolution of the overdense sphere
- Characterised by 4 parameters: a_{ta}, ζ, δ_c, Δ_V
- Two different approaches
 - 0
 - Evolution of the radius of the sphere
 - Evolution of the overdensity (hydrodynamical approach)

Two equations, for the scale factor and for the radius

$$\dot{x} = \sqrt{\frac{\omega}{x} + \lambda x^2 g(x) + (1 - \omega - \lambda)}$$
$$\ddot{y} = -\frac{\omega \zeta}{2y^2} - \frac{1 + 3w(x)}{2} \lambda g(x) y$$

 ζ and a_{ta} to be determined

Francesco Pace

Hydrodynamics

Continuity Equation

 $\dot{\delta} + (1 + \delta)\theta = 0$

Euler Equation

$$\dot{ heta} + 2H heta + rac{1}{3} heta^2 + \sigma^2 - \omega^2 + rac{1}{a^2}
abla^2\psi = 0$$

Poisson Equation

 $abla^2 \psi = 4\pi G a^2 ar{
ho} \delta$

Francesco Pace

 Motivations
 Theory
 Numerical effects
 Novel implementation
 Conclusions

 Numerical Infinity

FP, Meyer, Bartelmann, in preparation

Francesco Pace

Francesco Pace

- Setimation of an initial slope at $a_{ini} = 10^{-5}$
- Given an arbitrary initial overdensity δ_{ini} = 1, a_{ini} is scaled by the quantity δ(a_c)/δ(1)
- Solution New estimation of the initial slope at the new a_{ini} and determination of δ_{ini} leading to the collapse at $a = a_c$
- Sefinement of δ_{ini} via a Newton-Raphson method
- Once δ_{ini} has been found, linear (non-linear) differential equations are started with appropriate initial conditions: a linear (non-linear) relation is used to relate $\tilde{\theta}$ and δ
- δ_{ini} is now held fixed, but a_{ini} decreases with increasing collapse redshift z_c

Francesco Pace

Francesco Pace

Francesco Pace

Francesco Pace

- The new implementation provides stable and smooth results
- Analytic results are exactly matched
- δ_c is now bounded
- Easily adapted to more general models
- Tested with several dark energy models