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Theoretical motivations

The SCM is important for non-linear evolution of structures

It is the main ingredient for the mass function (MF)

The MF is used for the halo model

The MF is sensitive to cosmology
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Personal motivation
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Personal motivation
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Spherical collapse model

It follows the evolution of the overdense sphere

Characterised by 4 parameters: ata, ζ, δc, ∆V

Two different approaches
1 Evolution of the radius of the sphere
2 Evolution of the overdensity (hydrodynamical approach)
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Two equations, for the scale factor and for the radius

ẋ =

√
ω

x
+ λx2g(x) + (1 − ω − λ)

ÿ = −
ωζ

2y2 −
1 + 3w(x)

2
λg(x)y

ζ and ata to be determined

SCM implementationFrancesco Pace



Motivations Theory Numerical effects Novel implementation Conclusions

Hydrodynamics

Continuity Equation

δ̇ + (1 + δ)θ = 0

Euler Equation

θ̇ + 2Hθ + 1
3θ

2 + σ2 − ω2 + 1
a2∇

2ψ = 0

Poisson Equation

∇2ψ = 4πGa2ρ̄δ

SCM implementationFrancesco Pace



Motivations Theory Numerical effects Novel implementation Conclusions

Numerical Infinity
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Initial time
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New ICs

1 Estimation of an initial slope at aini = 10−5

2 Given an arbitrary initial overdensity δini = 1, aini is scaled by the
quantity δ(ac)/δ(1)

3 New estimation of the initial slope at the new aini and determination
of δini leading to the collapse at a = ac

4 Refinement of δini via a Newton-Raphson method

5 Once δini has been found, linear (non-linear) differential equations
are started with appropiate initial conditions: a linear (non-linear)
relation is used to relate θ̃ and δ

6 δini is now held fixed, but aini decreases with increasing collapse
redshift zc
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Results: evolution of δc
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Results: ICs
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Results: ICs
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Conclusions

The new implementation provides stable and smooth results

Analytic results are exactly matched

δc is now bounded

Easily adapted to more general models

Tested with several dark energy models
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