Low scale gravity and QCD at high energies

Flying to Hidden Universe

Houri Ziaeepour, Mullard Space Science Laboratory
Gravity and Hierarchy Problem

The first and main purpose of the brane models has been finding an explanation for hierarchy problem:

Why quantum gravity scale - Plank energy - seems to be so much higher than other known interactions scale?
The first and main purpose of the brane models has been finding an explanation for hierarchy problem:

Why quantum gravity scale - Plank energy - seems to be so much higher than other known interactions scale?

In brane models the fundamental quantum gravity scale can be adjusted by varying metric, size, and number of extra-dimensions.

At low energies Standard Model particles must somehow be kept on the brane.
Gravity and Hierarchy Problem

⋆ The first and main purpose of the brane models has been finding an explanation for hierarchy problem:

Why quantum gravity scale - Plank energy - seems to be so much higher than other known interactions scale?

⋆ We want to see what happens to SM particles in a high energy collision. This is relevant for LHC and high energy air showers.
Minimal Assumptions in Brane Models

* The fundamental scale of gravity is comparable to the presumed Electroweak scale $\gtrsim 1 \text{TeV}$.
Minimal Assumptions in Brane Models

- The fundamental scale of gravity is comparable to the presumed Electroweak scale $\gtrsim 1 TeV$.
- Graviton is able to propagate in large extra-dimension(s) but Standard Model particles are confined to a 4-dim. brane at low energies.
The fundamental scale of gravity is comparable to the presumed Electroweak scale $\gtrsim 1 TeV$.

Graviton is able to propagate in large extra-dimension(s) but Standard Model particles are confined to a 4-dim. brane at low energies.

At high energies all the particles are free to propagate to bulk.
Minimal Assumptions in Brane Models

- The fundamental scale of gravity is comparable to the presumed Electroweak scale $\gtrsim 1\text{TeV}$.
- Graviton is able to propagate in large extra-dimension(s) but Standard Model particles are confined to a 4-dim. brane at low energies.
- At high energies all the particles are free to propagate to bulk.
 - It seems natural to expect the deconfinement of all fields at a high energy scale, otherwise either the concept of living in a multi-dimensional universe is meaningless, or one should explain why particles live in distinct and crossing sub-universes.
Minimal Assumptions in Brane Models

⋆ The fundamental scale of gravity is comparable to the presumed Electroweak scale $\gtrsim 1 TeV$.

⋆ Graviton is able to propagate in large extra-dimension(s) but Standard Model particles are confined to a 4-dim. brane at low energies.

⋆ At high energies all the particles are free to propagate to bulk.
 - It seems natural to expect the deconfinement of all fields at a high energy scale, otherwise either the concept of living in a multi-dimensional universe is meaningless, or one should explain why particles live in distinct and crossing sub-universes.
 - In string models there is not yet a fundamental mechanism to explain compactification.
The fundamental scale of gravity is comparable to the presumed Electroweak scale $\gtrsim 1\text{TeV}$.

Graviton is able to propagate in large extra-dimension(s) but Standard Model particles are confined to a 4-dim. brane at low energies.

At high energies all the particles are free to propagate to bulk.

- It seems natural to expect the deconfinement of all fields at a high energy scale, otherwise either the concept of living in a multi-dimensional universe is meaningless, or one should explain why particles live in distinct and crossing sub-universes.
- In string models there is not yet a fundamental mechanism to explain compactification.
- Compactification can be due to the breaking of Lorentz and other symmetries, phase transition and formation of defects. Chan et al. 00, West 02
Simplest Brane Model

- We only consider warped models because particles are partially confined.
- Simplest warped brane metric is Randall-Sandrum model:

\[ds^2 = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^\mu dx^\nu - dz^2) \]

\[R \equiv \frac{1}{\mu}, \quad R' \equiv \frac{e^{\mu L}}{\mu}, \quad z \equiv \frac{1}{\mu} e^{\mu y} \]

- L: Effective bulk size or distance between branes.

- Near branes models with more complex geometries are similar to RS models Palma 06
Remind of some properties of particles spectrum

* Mass spectrum of eigen-modes (Kaluza-Klein modes) for 2-brane models Dubovsky et al. 2000, HZ 02:

\[|m_n| \approx \mu e^{-\mu L} \left(n\pi + \frac{\pi d}{4} + \frac{3\pi}{4} \right), \quad \Delta m \sim \pi \mu e^{-\mu L} \ll \mu, \; n \gg 1 \]

* Spectrum is roughly continuous.

* Gravitational confinement by warp factor depends on the tension on the brane and spin.

* Vector field (e.g. photons and gluons) can not be localized on the brane by warp factor. Dubovsky & Rubakov 01
Constraining brane model parameters

* Many measurements and observations can constrain brane models:
 - Violation of inverse square law; Smullin, *et al.* 05
 - Electroweak precision measurement; Marandella & Papucci 04
 - Modification of Big Bang Nucleosynthesis and FLRW cosmology; HZ 00, Bratt *et al.* 02 Fairbairn & Goobar 05
Many measurements and observations can constrain brane models:

- Violation of inverse square law; Smullin, *et al.* 05
- Electroweak precision measurement; Marandella & Papucci 04
- Modification of Big Bang Nucleosynthesis and FLRW cosmology; HZ 00, Bratt *et al.* 02 Fairbairn & Goobar 05

Interaction of ultra high energy cosmic ray has a CM energy \(\sim 10^3 TeV \), and can constrain brane models at energies unavailable to accelerators.
Which scale is probed by UHECRs?

- At high energies nucleon-nucleon collision and Deep Inelastic Scattering (DIS) are dominated by small $x_b \equiv Q^2 / 2p.q$ regime.
- In accelerators the KK-modes can be distinguished only if they have large transverse momentum.
- In an air-shower KK-mode does not need to have a large transverse momentum to be observed.
Which scale is probed by UHECRs?

- At high energies nucleon-nucleon collision and Deep Inelastic Scattering (DIS) are dominated by small $x_b \equiv Q^2/2p.q$ regime.
- In accelerators the KK-modes can be distinguished only if they have large transverse momentum.
- In an air-shower KK-mode does not need to have a large transverse momentum to be observed.
Which scale is probed by UHECRs?

* Momentum ordering - smaller fraction of momentum, larger diffraction angle - is the evidence of QCD radiational effect and direct relation between small x and large x physics.

Figure 0: Iancu 06
Difficulties

- At high energies due to high density of partons (gluons) processes are very complicate and mostly non-perturbative, $\alpha_s \ln(1/x_b) > 1$.

- If we can study the evolution of QCD interactions with energy scale, we can relate low energy scale (long distance) observables to interactions at high energy scales (short distance) - presumably TeV scale if incident hadrons are enough energetic.

- Due to non-perturbative properties of QCD, there is no exact formulation of the scale evolution.
Color Glass Condensate (CGC)

- Color Glass Condensate approximation assumes that in light cone coordinates, color charges are concentrated only on a sheet. McLerran & Venugopalan 94

- The origin of color charge is mostly valance quarks, but sea partons integrated up to a scale Λ^+ also contribute to the total charge. Soft partons (mostly gluons) make a swarm between these sheets.

- This approximation is more systematic than e.g. BFKL (in fact equivalent at first order).
Color Glass Condensate (CGC)

- Color Glass Condensate approximation assumes that in light cone coordinates, color charges are concentrated only on a sheet. McLerran & Venugopalan 94

- The origin of color charge is mostly valance quarks, but sea partons integrated up to a scale Λ^+ also contribute to the total charge. Soft partons (mostly gluons) make a swarm between these sheets.

- This approximation is more systematic than e.g. BFKL (in fact equivalent at first order).

This approximation can be applied to any regime and not just what is called saturation as long as we deal with statistical distribution of a large number of partons.
Color Glass Condensate (CGC) in 5-dimension

* QCD is modelled by an effective, classical $SU(3)$ gauge field A^B of gluons. A universal bare coupling in the bulk and on the branes is assumed.

* In Light Cone (LC) gauge:
 \[A^+ = 0, \quad x^+ = x^0 + x^3, \quad x^- = x^0 - x^3, \quad \vec{x} = \{ x^-, x^\perp, z \} \]

* Classical dynamic equation:
 \[
 [D_A, F^{AB}](x) = \delta^B + \mathcal{W}(x^+, \vec{x})\rho(\vec{x})\mathcal{W}^\dagger_{\Lambda+}(x^+, \vec{x})
 \]
 \[
 \mathcal{W}_{\Lambda+}(x^+, \vec{x}) = T \exp \left\{ ig \int_{x_0^+}^{x^+} d\eta^+ \frac{R^2}{z^2} A^-(\eta^+, \vec{x}) \right\}
 \]

* If fermions are confined to the visible brane, $\rho \neq 0$ only for $z = R'$. But this configuration is inconsistent and is violated by a gauge transformation.
Quantum extension of CGC

* For quantum extension, quantities must be averaged for all possible distribution of charge $\rho(\vec{x})$. Partition function:

$$
Z[j] = \int D\rho P_{\Lambda^+}[\rho] \left\{ \frac{\int^{\Lambda^+} DA\delta(A^+)e^{iS[A,\rho]} - \int d^5x \sqrt{-gA.J}}{\int^{\Lambda^+} DA\delta(A^+)e^{iS[A,\rho]}} \right\}
$$

* When quantum corrections are added, the evolution equation for P_{Λ^+} the probability distribution of $\rho(\vec{x})$ can be described as a renormalization group equation: Jalalian Marian et al. 97, Iancu et al. 00

$$
\frac{\delta P_{\tau}[\rho]}{\delta \tau} = \alpha_s \left\{ \frac{1}{2} \frac{\delta^2}{\delta \rho^a_{\tau}(x^\perp,z)\delta \rho^b_{\tau}(x'^\perp,z')} [P_{\tau}\chi^{ab}] - \frac{\delta}{\delta \rho^a_{\tau}(x^\perp,z)} [P_{\tau}\sigma^a] \right\}
$$

$$
\sigma^a = \langle \delta \rho^a \rangle \quad \chi^{ab} = \langle \delta \rho^a \delta \rho^b \rangle \quad \tau \equiv \ln(P^+/\Lambda^+)
$$
Quantum extension of CGC

* The existence of a RG-like evolution equation relating various scales shows that this approximation has the general aspects of the exact theory, although details can be different.
Quantum extension of CGC

- The existence of a RG-like evolution equation relating various scales shows that this approximation has the general aspects of the exact theory, although details can be different.
- Even this approximate equation is too complex to be solved analytically.
Quantum extension of CGC

- The existence of a RG-like evolution equation relating various scales shows that this approximation has the general aspects of the exact theory, although details can be different.

- Even this approximate equation is too complex to be solved analytically.

- If we assume that P_τ has a Gaussian form, $T^{ab}\chi^{ab} = \langle \delta \rho^a \delta \rho^b \rangle$ can be interpreted as its standard deviation.
Quantum extension of CGC

- The existence of a RG-like evolution equation relating various scales shows that this approximation has the general aspects of the exact theory, although details can be different.

- Even this approximate equation is too complex to be solved analytically.

- If we assume that P_τ has a Gaussian form, $T^{ab} \chi^{ab} = \langle \delta \rho^a \delta \rho^b \rangle$ can be interpreted as its standard deviation.

- With this approximation we determine the evolution of gluon distribution in the bulk.
Gluon distribution function in the bulk

* Distribution of gluons in the bulk defined as: Muller 99 HZ 05

\[x_b G(x_b, Q^2, z) = 2J_1(1) P^+ x_b Q^2 \int d^3 \vec{x} e^{i P^+ x_b x^-} x^{1/2} \int d^3 \vec{x}' \]
\[\int_0^L \, dy' e^{\mu y'} \left\langle A^i(x^+, \vec{x}', y') A_i(x^+, \vec{x} - \vec{x}', y - y') \right\rangle \]

* Expectation value of any functional \(O(\rho) \) is

\[\langle O(\rho) \rangle = N \int D\rho \mathcal{P}[\rho] O(\rho). \]

\[\left\langle A^i_a(\vec{x}, z) A_{bi}(\vec{x}', z') \right\rangle = \delta_{ab} \chi(\vec{x}, \vec{x}', z, z') \partial_i \partial_{i'} \gamma(x^\perp, x'^\perp, z, z') + \ldots \]

\[\chi \equiv (zz')^{1/2} \frac{1}{R} \int_{-\infty}^{\max(x^-, x'^-)} dx''^- \sigma_+(x''^-, x'^\perp, z) \sigma_+(x''^-, x'^\perp, z') \]

Brane-World Gravity, Progress and Problems, Portsmouth, Sep. 2006
Gluon distribution function in the bulk

Standard deviation of ρ distribution:

$$T^{ab} \chi_{ab} \approx 4i g^2 T^{ab} F_{ac}^{+i}(x) \langle x | G_{0ij} | y \rangle F_{cb}^{+j}(y) \sim \sigma^2_{\Lambda} \propto \left(\frac{zz'}{R^2} \right)^n$$

$$n \sim \frac{3}{2}$$

$$G_0^{ij-1}(x) = g^{ij} \partial_i B \partial_j B, \quad i = \perp, z$$

$$M_5 = 10^{14} \text{eV}$$

$$M_5 = 10^{15} \text{eV}$$

Fine-tuned RS-model:

$$\log \left(\frac{R'}{R} \right) = \log \left(\frac{M_{pl}}{M_5} \right)$$
Gluon distribution function in the bulk

\[M_5 = 10^{15} \text{eV} \]

\[M_5 = 10^{14} \text{eV} \]

\[\mu = M_5 \]

\[2 \times 10^8 \text{eV} \leq |k_\perp| \]

\[1.26 \times 10^{10} \text{eV} \]

* Gluon distribution in the bulk normalized to the amplitude of the distribution on the visible brane at \(z = R' \).
In general the probability of $z \neq R'$ is much larger than $z = R'$, and its maximum is toward the brane at $z = R$. From propagator equation:

$$\frac{g_0^2}{g_n^2} \sim \left(\frac{m_n}{\mu} \right)^2 \propto e^{-2\mu L}$$
Gluon distribution function in the bulk

In general the probability of $z \neq R'$ is much larger than $z = R'$, and its maximum is toward the brane at $z = R$. From propagator equation:

$$\frac{g_0^2}{g_n^2} \sim \left(\frac{m_n}{\mu} \right)^2 \propto e^{-2\mu L}$$

The approximate quantum solution confirms the classical results.
Gluon distribution function in the bulk

* In general the probability of \(z \neq R' \) is much larger than \(z = R' \), and its maximum is toward the brane at \(z = R \). From propagator equation:

\[
\frac{g_0^2}{g_n^2} \sim \left(\frac{m_n}{\mu} \right)^2 \propto e^{-2\mu L}
\]

* The approximate quantum solution confirms the classical results.

* CGC is relevant for non-hadronized gluons. After hadronization coupling between particles changes and propagation will not be the same. This is important for models with macroscopic bulk like fine-tuned RS model, but irrelevant when the bulk size is smaller than \(\Lambda^{-1}_{QCD} \).
Conclusions

Collision of high energy particles can probe small distance physics not just with high transverse momentum, but with all events.
Conclusions

★ Collision of high energy particles can probe small distance physics not just with high transverse momentum, but with all events.
★ The difficulty is finding a way to distinguish the signature of new physics.
Conclusions

★ Collision of high energy particles can probe small distance physics not just with high transverse momentum, but with all events.
★ The difficulty is finding a way to distinguish the signature of new physics.
★ If a macroscopic or relatively large higher dimension exists, it should have modified the spectrum of UHECRs and their shower in the terrestrial atmosphere.
Conclusions

- Collision of high energy particles can probe small distance physics not just with high transverse momentum, but with all events.
- The difficulty is finding a way to distinguish the signature of new physics.
- If a macroscopic or relatively large higher dimension exits, it should have modified the spectrum of UHECRs and their shower in the terrestrial atmosphere.
- This put a lower limit of $M_5 \gtrsim 10^3 \text{TeV}$ on static RS model.
Conclusions

★ Collision of high energy particles can probe small distance physics not just with high transverse momentum, but with all events.
★ The difficulty is finding a way to distinguish the signature of new physics.
★ If a macroscopic or relatively large higher dimension exits, it should have modified the spectrum of UHECRs and their shower in the terrestrial atmosphere.
★ This put a lower limit of $M_5 \gtrsim 10^3 TeV$ on static RS model.
★ Regarding this limit, should we consider brane models as a solution for hierarchy problem if Electroweak scale is $\sim 1 TeV$?
Back to Hierarchy Problem
Back to Hierarchy Problem
Back to Hierarchy Problem

From **Old Hierarchy** we learn that a model should work in its most simplest case, and additional of more complexities must be only limited to its minor aspects.